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The main aim
Fix k a field. We assume to work in the category M := Vectk of k-vector spaces.

Fact
H bialgebra ⇒ the category MH of H-modules is monoidal. The category MH

H of
Hopf modules is the category of comodules on the H-module coalgebra H: (MH)H .

Our aim is to extend the following result to the framework of quasi-bialgebras.

Theorem
T.F.A.E. for a bialgebra H:

1 the functor (−)⊗ H : M→MH
H is an equivalence of categories with

quasi-inverse (−)coH : MH
H →M, where McoH := {m ∈ M | ρ(m) = m ⊗ 1};

2 H is a Hopf algebra, i.e. it admits an antipode s : H → H.

Sketch of proof.
The assignment [m 7→ τM(m0)⊗m1 ], where τM : M → McoH , [m 7→ m0 · s(m1) ],
defines the inverse for the counit ϑM : McoH ⊗ H → M, [m ⊗ h 7→ m · h ]. The unit
is always invertible.
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Monoidal categories

Definition (Benabou/Mac Lane, 1963)
A monoidal category (M,⊗, I, α, `, ℘) is a category M endowed with a functor
⊗ : M×M→M (tensor product), an object I (unit) and 3 natural isomorphisms:

αM,N,P : (M ⊗ N)⊗ P → M ⊗ (N ⊗ P) (associativity constraint)

`M : I⊗M → M, ℘N : N ⊗ I→ N (unit constraints)
such that the following diagrams commute (pentagon and triangle axioms):

((M⊗N)⊗P)⊗Q

α⊗Q
~~

α // (M⊗N)⊗(P⊗Q)

α

  
(M⊗(N⊗P))⊗Q

α

''

M⊗(N⊗(P⊗Q))

M⊗((N⊗P)⊗Q)

M⊗α

77

(M⊗I)⊗N
α //

℘⊗N

��

M⊗(I⊗N)

M⊗`

��
M⊗N
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Quasi-bialgebras

Definition (Drinfel’d, [Dr, 1989])
A quasi-bialgebra is a datum (A,m, u,∆, ε,Φ) where:

1 (A,m, u) is an associative and unital algebra;
2 ∆ : A→ A⊗ A (comultiplication) and ε : A→ k (counit) are algebra maps;
3 Φ ∈ A⊗ A⊗ A is an invertible element (reassociator) that satisfies:

(A⊗ A⊗∆)(Φ) · (∆⊗ A⊗ A)(Φ) = (1⊗ Φ) · (A⊗∆⊗ A)(Φ) · (Φ⊗ 1),
(A⊗ ε⊗ A)(Φ) = 1⊗ 1.

Moreover, ε is a counit for ∆ and ∆ is quasi-coassociative, i.e.

Φ · ((∆⊗ A) ◦∆) = ((A⊗∆) ◦∆) · Φ.

[Dr] V. G. Drinfel’d, Quasi-Hopf algebras. (Russian) Algebra i Analiz 1 (1989), no.
6, 114-148; translation in Leningrad Math. J. 1 (1990), no. 6, 1419-1457.
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Quasi-bialgebras

Fact
If A is a quasi-bialgebra then AMA is a monoidal category:

for all M,N ∈ AMA, M ⊗ N ∈ AMA via

a · (m ⊗ n) · b = (a1 ·m · b1)⊗ (a2 · n · b2);

k ∈ AMA via a · 1 · b = ε(a)ε(b)1;
for all m ∈ M, n ∈ N, p ∈ P, the associativity constraint is given by

AαA
(
(m ⊗ n)⊗ p

)
= Φ ·

(
m ⊗ (n ⊗ p)

)
· Φ−1.

Proposition/Definition (Hausser and Nill, [HN, 1999])(
(A,m,m),∆, ε

)
is a coassociative A-bimodule coalgebra. Its category of (right)

quasi-Hopf bimodules is the category of A-comodules in AMA: AM
A
A :=

(
AMA

)A.

[HN] F. Hausser, F. Nill, Integral theory for quasi-Hopf algebras, preprint
(arXiv:math/9904164v2).
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An adjunction between AM and AM
A
A

Henceforth, let us fix a quasi-bialgebra (A,m, u,∆, ε,Φ) and denote by
A+ := ker(ε) its augmentation ideal.
The subsequent result is contained in the proof of Theorem 3.1 in

[Sc] P. Schauenburg, Two characterizations of finite quasi-Hopf algebras. J.
Algebra 273 (2004), no. 2, 538-550.

Theorem
Set M := M

MA+ ∈ AM. We have that the functor R := (−)⊗ A : AM→ AM
A
A is

right adjoint to the functor L := (−) : AM
A
A → AM. Unit and counit are given by:

ηM : M → M ⊗ A,
[
m 7→ m0 ⊗m1

]
and εN : N ⊗ A→ N,

[
n ⊗ a 7→ n ε(a)

]
respectively. Moreover ε is always a natural isomorphism.

Main question: When is R an equivalence of categories?
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Answering the main question (I)

Consider the quasi-Hopf bimodule A ⊗̂A with underling vector space A⊗ A and
structures given explicitly by:

a · (x ⊗ y) = x ⊗ ay , (x ⊗ y) · a = xa1 ⊗ ya2,

ρ(x ⊗ y) =
(
(x ⊗ y1)⊗ y2

)
· Φ

The component of the unit associated to A ⊗̂A satisfies:

η̂A := ηA ⊗̂ A : A ⊗̂A→ A ⊗̂A⊗ A,
[
a ⊗ b 7→ aΦ1 ⊗ b1Φ2 ⊗ b2Φ3]

Definition
A preantipode for a quasi-bialgebra (A,Φ) is a linear map S : A→ A that satisfies:

(P1) b1S(ab2) = S(a)ε(b), ∀ a, b ∈ A; a=1
 b1S(b2) = S(1)ε(b)

(P2) S(a1b)a2 = ε(a)S(b), ∀ a, b ∈ A;
(P3) Φ1S(Φ2)Φ3 = 1, where Φ = Φ1 ⊗ Φ2 ⊗ Φ3 (summation understood).
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Answering the main question (II)

Theorem (Structure Theorem for quasi-Hopf bimodules)
Let (A,m, u,∆, ε,Φ) be a quasi-bialgebra. T.F.A.E.:
(i) (L,R, η, ε) is an equivalence of categories;
(ii) η̂A : A ⊗̂A→ A ⊗̂A⊗ A is an isomorphism;
(iii) A admits a preantipode;
(iv) for every M ∈ AM

A
A there exists a linear map τ̃M : M → M such that

τ̃M(m0) ·m1 = m and τ̃M(m)0 ⊗ τ̃M(m)1 = m ⊗ 1 (∀m ∈ M) .

Proof.
(i) ⇒ (ii) Trivial.
(ii) ⇒ (iii) S(a) := (A⊗ ε)

(
η̂ −1

A
(
1⊗ a ⊗ 1

) )
.

(iii) ⇒ (iv) τM(m) := Φ1 ·m0 · S(Φ2m1)Φ3 factors through τ̃M : M → M.
(iv) ⇒ (i) η−1

M (m ⊗ a) := τ̃M(m) · a.

As a consequence: the preantipode, when it exists, is unique.
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Coinvariants for quasi-Hopf bimodules

Let (A,m, u,∆, ε,Φ,S) be a quasi-bialgebra with preantipode and M ∈ AM
A
A.

Definition
The space of coinvariant elements of a M ∈ AM

A
A is McoA := τM(M).

Proposition
McoA is a left A-module via a .m := τM(a ·m), ∀ a ∈ A,m ∈ M.
The map τ̃M : M ∼−→ McoA is an isomorphism in AM with inverse map
σM : McoA → M,

[
m 7→ m

]
.

Corollary
Every M ∈ AM

A
A is of the form McoA ⊗ A.
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Revisiting classical results (I)

Hopf case
Let (H,m, u,∆, ε) be an ordinary bialgebra.

(H, s) is a Hopf algebra with antipode s if and only if (H,m, u,∆, ε,Φ, s) is a
quasi-bialgebra with preantipode s and reassociator Φ = 1⊗ 1⊗ 1.
One checks that the two maps τM coincide for all M ∈MH

H and then the
inverse to the original counit is given by:

ϑ −1
M : m 7→ (τ̃M ⊗ H)

(
ηM(m)

)
= τM(m0)⊗m1.

If every H-Hopf module satisfies the Fundamental Theorem, then one can
verify that for every M ∈ HM

H
H

τM(m) :=
(
McoH ⊗ ε

) (
ϑ−1

M (m)
)

factors through τ̃M : M → McoH and that it satisfies condition (iv) of the
Structure Theorem.

In this context, the Structure Theorem for quasi-Hopf bimodules reduces to the
classical Fundamental Theorem of Hopf modules.
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Revisiting classical results (II)

Definition (Drinfel’d, 1989)
We say that a quasi-bialgebra (A,m, u,∆, ε,Φ) is a quasi-Hopf algebra if it is
endowed with an algebra anti-homomorphism s : A→ A and two distinguished
elements α and β such that:

s(a1)αa2 = α ε(a) a1βs(a2) = β ε(a)

Φ1βs(Φ2)αΦ3 = 1 s(φ1)αφ2βs(φ3) = 1

The triple (s, α, β) is called quasi-antipode.

Quasi-Hopf case
1 Every quasi-Hopf algebra (H,m, u,∆, ε,Φ, s, α, β) admits a preantipode:

S(·) := βs(·)α.
2 If s is invertible, then τM coincides with the projection E of Hausser and Nill:
τ(m) = Φ1 ·m0 · βs(Φ2m1)αΦ3 = Φ1 ·m0 · βs(s−1(αΦ3)Φ2m1) = E (m).

It is then possible to obtain Hausser and Nill’s result from our Structure Theorem.
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From preantipodes to quasi-antipodes (I)

It is sometimes possible to produce a quasi-antipode given a preantipode. E.g. we
have implicitly seen the case of ordinary bialgebras.

Proposition
If (A,m, u,∆, ε,Φ, S) is a commutative quasi-bialgebra with preantipode, then A is
an Hopf algebra with antipode s(a) = Φ1S(aΦ2)Φ3 and (A,m, u,∆, ε,Φ, s, 1, S(1))
is a quasi-Hopf algebra.

Theorem (Theorem 3.1 in [Sc])
For a finite dimensional quasi-bialgebra (A,m, u,∆, ε,Φ), T.F.A.E.:

1 A is a quasi-Hopf algebra.
2 The adjunction (L,R, η, ε) is an equivalence of categories.

[Sc] P. Schauenburg, Two characterizations of finite quasi-Hopf algebras. J.
Algebra 273 (2004), no. 2, 538-550.
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From preantipodes to quasi-antipodes (II)
A key point in the proof of (2⇒ 1) of Schauenburg’s result is the existence (derived
by applying Krull-Schmidt Theorem) of an isomorphism γ̃ : •A⊗ A ∼−→ •A of left
A-modules and of a linear morphism γ : A→ A,

[
a 7→ γ̃

(
1⊗ a

)]
that satisfy also

γ̃
(
a ⊗ b

)
= aγ(b) and a1γ(a2) = ε(a)γ(1).

Consider ξ
(
a ⊗ b

)
:= (A⊗ ε)

(
η̂ −1

A (a ⊗ b ⊗ 1)
)
. The maps ξ and S satisfy

ξ
(
a ⊗ b

)
= aS(b) and a1S(a2) = ε(a)S(1).

However, a posteriori, γ̃(a ⊗ b) = aβs(b) while ξ(a ⊗ b) = aβs(b)α and α cannot
be expected to be invertible in general.

Proposition
If ξ is invertible then

((
a s7−→ 11S(a12)

)
, 1,S(1)

)
, where 11 ⊗ 12 = ξ−1(1),

defines a quasi-antipode (without any hypothesis on the dimension of A).

Corollary
If (A,m, u,∆, ε,Φ, s, α, β) is a finite dimensional quasi-Hopf algebra and α is
invertible, then we can recover explicitly the quasi-antipode from the preantipode.
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Concluding example

Example (Preliminaries 2.3 in [EG])
Let C2 = 〈g〉 be the cyclic group of order 2 and let H(2) := kC2 be its group
algebra (char(k) 6= 2):

m(p ⊗ q) = p · q, u(1k) = 1C2 , ∆(p) = p ⊗ p, ε(p) = 1k (∀ p, q ∈ C2 ).

Let us consider the non trivial reassociator:

Φ := (1⊗ 1⊗ 1)− 2(λ⊗ λ⊗ λ) where λ := 1
2 (1− g).

One can verify that (H(2),m, u,∆, ε,Φ, IdH(2), g , 1) is a quasi-Hopf algebra.
Therefore S : H(2)→ H(2), [ z 7→ z · g ] provides a preantipode for H(2) and

ξ : H(2)⊗ H(2)→ H(2),
[
x ⊗ y 7→ x · y · g

]
is easily checked to be invertible with inverse ξ−1(x) = x ⊗ g .
A quasi-antipode for H(2) is given then by (IdH(2), 1, g).

[EG] P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of
codimension 2. Math. Res. Lett.11 (2004) no. 5-6, 685-696.
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Work in progress

Missing example
A quasi-bialgebra with preantipode that is not a quasi-Hopf algebra.

We firmly believe that such an example should exist. In the dual case an example of
a dual quasi-bialgebra without quasi-antipode but such that the Structure Theorem
is satisfied can be found in:
[Sc] P. Schauenburg, Hopf algebra extensions and monoidal categories, in New

Directions in Hopf Algebras, 321-381, Math. Sci. Res. Inst. Publ., 43,
Cambridge Univ. Press, Cambridge, 2002.

Our next aim will be to find a significant example for the case of quasi-bialgebras.
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