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The classical algebra/coalgebra duality
Fix k a field. We assume to work in the category M := Vectk of k-vector spaces.
An associative algebra is a triple (A,m : A⊗ A→ A, u : k→ A) s.t.

m ◦ (m ⊗ A) = m ◦ (A⊗m) , m ◦ (u ⊗ A) = idA = m ◦ (A⊗ u) .

A coassociative coalgebra is a triple (C ,∆ : C → C ⊗ C , ε : k→ C) s.t.

(∆⊗ C) ◦∆ = (C ⊗∆) ◦∆, (ε⊗ C) ◦∆ = idC = (C ⊗ ε) ◦∆.

If C is a coassociative coalgebra, then (C∗,∆∗, ε∗) is an associative algebra.
The finite (or Sweedler, or restricted) dual

A◦ = {f ∈ A∗ | Ker(f ) contains a finite-codimensional ideal of A}

of A is the largest subspace of A∗ for which ∆A◦ = m∗ : A∗ → (A⊗ A)∗ defines a
comultiplication. The pair of functors

Algk
(−)◦

// Coalgk
(−)∗

oo

defines a duality between the category of algebras and that of coalgebras.
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Motivation I

Definition
A bialgebra is a datum (H,m, u,∆, ε) where

(H,m, u) is an associative algebra;
∆ and ε are algebra maps s.t. (H,∆, ε) is a coassociative coalgebra;

If further we have S : H → H s.t. m ◦ (S ⊗ H) ◦∆ = u ◦ ε = m ◦ (H ⊗ S) ◦∆ then
S is called the antipode and (H,m, u,∆, ε,S) is a Hopf algebra.

Theorem (Sweedler, 1960)
If H is a Hopf algebra then H◦ is a Hopf algebra.

Remark
The set G(H) = {h ∈ H | ∆(h) = h ⊗ h} of group-like elements is a group
with product induced by H, unit 1H and inverse h−1 := S(h).
The space P(H) = {h ∈ H | ∆(h) = h ⊗ 1 + 1⊗ h} of primitive elements is a
Lie algebra with bracket [f , g ] := fg − gf .
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Motivation II

Example (Hopf a. of representative functions on a topological group)
Let (G , µ, ι, e) be a topological group and CR(G) be the algebra of real-valued
continuous functions on G . A f ∈ CR(G) is a representative function iff there exists
V fin. dim. representation of G , v ∈ V and ϕ ∈ V ∗ s.t. f (x) = ϕ(x · v) for all
x ∈ G . Let RR(G) be the algebra of representative functions. The maps

∆ : RR(G)→ RR(G)⊗RR(G) , f 7→
∑

i gi ⊗ hi

ε : RR(G)→ R , f 7→ f (e)

S : RR(G)→ RR(G) , f 7→ f ◦ ι
where

∑
i gi ⊗ hi is defined uniquely by the relation

∑
i gi (x)hi (y) = f (xy), endow

RR(G) with an Hopf algebra structure.

Conversely, if H is Hopf then G (H◦) = AlgR(H,R) is a topological group. The pair
of functors

TopGrp
RR(−) // CHopfR
G(−◦)

oo

defines a duality that restricts to an anti-equivalence between compact Lie groups
and finitely generated commutative R-Hopf algebras (plus other properties).
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Motivation III

Example (Hopf a. of regular functions on an affine algebraic group)
Let us denote by (G , µ, ι, e) an (affine) algebraic group over an algebraically closed
field k. The algebra k[G ] of global regular functions on G has the same Hopf
algebra structure of the previous example, i.e.

∆ : k[G ]→ k[G ]⊗ k[G ] induced by µ,
ε : k[G ]→ k induced by e and
S : k[G ]→ k[G ] induced by ι.

Conversely, if H is a finitely generated reduced commutative Hopf algebra over an
algebraically closed field k then G (H◦) is an affine algebraic group. The pair of
functors

AffGrpk
k[−] // CHopfk(+ · · · )
G(−◦)

oo

defines an anti-equivalence of categories. P (H◦) is the Lie algebra of G (H◦).

P. Saracco (University of Turin) A duality result for (dual) quasi-bialgebras November 3, 2015 5 / 17
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The main construction I
A (non-associative) algebra is simply a (unital) algebra (A,m, u).
Dually, a (non-coassociative) coalgebra is a (counital) coalgebra (C ,∆, ε).
If C is a coalgebra, then (C∗,∆∗, ε∗) is an algebra.

Obstruction
In general we have: A∗ m∗

//

∆(?) %%

(A⊗ A)∗

A∗ ⊗ A∗
� ?

ϕA,A

OO

where for every V ,W ∈M

ϕV ,W : V ∗ ⊗W ∗ → (V ⊗W )∗ , f ⊗ g 7→ mk ◦ (f ⊗ g).

Definition (cf. [Mi1, page 13])
A subspace V ⊆ A∗ is good if m∗(V ) ⊆ ϕA,A(V ⊗ V ).

[Mi1] W. Michaelis, Lie coalgebras. Adv. in Math. 38 (1980), no. 1, 1–54.
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The main construction II

On a good subspace V ⊆ A∗ we can define ∆V (f ) =
∑m

i=1 gi ⊗ hi , uniquely
determined by f (ab) =

∑m
i=1 gi (a)hi (b).

Remark
The maximal good subspace of A∗,

A• :=
∑

V good
V ,

turns out to be a (non-coassociative and counital) coalgebra.

Definition (cf. [ACM, section 2])
The coalgebra A• is the finite dual coalgebra of A.

[ACM] J. A. Anquela, T. Cortés, F. Montaner, Nonassociative coalgebras. Comm.
Algebra 22 (1994), no. 12, 4693-4716.
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A couple of examples

Example
Let A be an algebra and A◦ =

{
f ∈ A∗ | Ker(f ) ⊇ I s.t. dimk

(A
I
)
<∞

}
its

Sweedler dual. Then A◦ ⊆ A•. If moreover A is associative, then A◦ = A•.

C coalgebra is locally finite if every x ∈ C lies in a finite-dimensional subcoalgebra.

Example
Let C be a non-locally finite coalgebra and A := C∗. Since C ↪→ C∗•, A• is
non-locally finite. On the other hand, A◦ = Loc(A•), the biggest locally finite
subcoalgebra. Hence A◦ ( A•.
An example of such C is given by k[X ] with

∆(1) = 1⊗ 1, ∆(X ) = X ⊗ 1 + 1⊗ X ,
∆(X n) = X n ⊗ 1 + 1⊗ X n + X n+1 ⊗ X + X ⊗ X n+1.

X 2 does not lie in any finite-dimensional subcoalgebra.
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The first adjunction
Set NAlgk and NCoalgk for the categories of algebras and coalgebras respectively.
(−)∗ : Coalgk → Algk extends to a contravariant functor (−)∗ : NCoalgk → NAlgk
and the finite dual induces (−)• : NAlgk → NCoalgk.

Theorem (cf. [ACM, section 2])
For every A ∈ NAlgk and C ∈ NCoalgk we have a natural isomorphism

NAlgk (A,C∗) ∼= NCoalgk (C ,A•) .

I.e. we have a duality
NAlgk

(−)•
// (NCoalgk)op

.
(−)∗

oo

[ACM] J. A. Anquela, T. Cortés, F. Montaner, Nonassociative coalgebras. Comm.
Algebra 22 (1994), no. 12, 4693-4716.

Proposition
The canonical injection ϕA,B : A∗ ⊗ B∗ → (A⊗ B)∗ induces a natural isomorphism

A• ⊗ B• ∼= (A⊗ B)•.
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The second adjunction I

An intermediate step between (co)algebras and (dual) quasi-bialgebras is given by:

Definition
A associative algebra with comultiplication and counit is a datum (A,m, u,∆, ε) s.t

(A,m, u) ∈ Algk;
∆ : C → C ⊗ C and ε : C → k are algebra maps s.t. (A,∆, ε) ∈ NCoalgk.

Dually

Definition
A coassociative coalgebra with multiplication and unit is a datum (C ,∆, ε,m, u) s.t

(C ,∆, ε) ∈ Coalgk;
m : C ⊗ C → C and u : k→ C are coalgebra maps s.t. (C ,m, u) ∈ NAlgk.
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The second adjunction II

The finite dual functor (−)• restricts to a contravariant functor

(−)• : NAlg (Coalgk)→ NCoalg (Algk) .

On the other hand, (−)◦ : Algk → Coalgk lifts to a contravariant functor

(−)◦ : NCoalg (Algk)→ NAlg (Coalgk) .

Theorem
There is a natural isomorphism:

NCoalg (Algk)
(
A,C•

)
∼= NAlg (Coalgk)

(
C ,A◦

)
for every pair A ∈ NCoalg (Algk) and C ∈ NAlg (Coalgk). I.e. we have a duality

NAlg (Coalgk)
(−)•

//
(
NCoalg (Algk)

)op
.

(−)◦
oo
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(Dual) quasi-bialgebras

Definition (Drinfel’d, 1989)
A quasi-bialgebra is an object (H,m, u,∆, ε) in the category NCoalg (Algk),
endowed with a counital 3-cocycle Φ =

∑
Φ1 ⊗Φ2 ⊗Φ3 called the reassociator, i.e.

an invertible element in the algebra H ⊗ H ⊗ H that satisfies

(H ⊗ H ⊗∆) (Φ) · (∆⊗ H ⊗ H) (Φ) = (1⊗ Φ) · (H ⊗∆⊗ H)(Φ) · (Φ⊗ 1),

(ε⊗ H ⊗ H)(Φ) = (H ⊗ ε⊗ H)(Φ) = (H ⊗ H ⊗ ε)(Φ) = 1⊗ 1,
Φ · (∆⊗ H)(∆(h)) = (H ⊗∆)(∆(h)) · Φ.

Definition (Majid, 1990)
A dual quasi-bialgebra is an object (U,∆, ε,m, u) in the category NAlg (Coalgk),
endowed with a unital 3-cocycle ω called the reassociator, i.e. a convolution
invertible element ω ∈ (U ⊗ U ⊗ U)∗ that satisfies

(ω ◦ (U ⊗ U ⊗m)) ∗ (ω ◦ (m ⊗ U ⊗ U)) = (ε⊗ ω) ∗ (ω ◦ (U ⊗m ⊗ U)) ∗ (ω ⊗ ε)

ω (h ⊗ k ⊗ l) = ε (h) ε (k) ε (l) , whenever 1U ∈ {h, k, l}
(u ◦ ω) ∗ (m ◦ (m ⊗ U)) = (m ◦ (U ⊗m)) ∗ (u ◦ ω).
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The last adjunction I

Lemma
(−)◦ : NCoalg (Algk)→ NAlg (Coalgk) restricts further to a contravariant functor

(−)◦ : QBialgk → DQBialgk.

If (H,Φ =
∑

Φ1 ⊗ Φ2 ⊗ Φ3) is a quasi-bialgebra and η denotes the unit of the

adjunction Algk
(−)◦

// (Coalgk)op

(−)∗
oo then we have an algebra map

ηH⊗3 : H⊗3 //
(
(H⊗3)◦

)∗ ∼= (
(H◦)⊗3)∗

, Φ � // ω,

whence ω(f ⊗ g ⊗ h) =
∑

f
(
Φ1) g (Φ2) h (Φ3) defines a reassociator for H◦.

Remark
ω =

∑
evΦ1 ⊗ evΦ2 ⊗ evΦ3 ∈ (H◦)∗ ⊗ (H◦)∗ ⊗ (H◦)∗ .
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The last adjunction II

Proposition
Let (U,∆, ε,m, u, ω) ∈ DQBialgk and assume that the following holds:

(∗) ∃Φ ∈ (U•)⊗3 invertible s.t. ω is the image of Φ via ζU : (U•)⊗3
↪→ (U⊗3)∗.

Then (U•,m•, u•,∆•, ε•,Φ) is a quasi-bialgebra.

Definition
A dual quasi-bialgebra that satisfies (∗) is called a split dual quasi-bialgebra.

Split dual quasi-bialgebras form a full subcategory SDQBialgk of DQBialgk and
(−)• yields a contravariant functor (−)• : SDQBialgk → QBialgk.

Theorem
The duality between NAlg (Coalgk) and NCoalg (Algk) induces the adjunction

SDQBialgk
(−)•

//
(
QBialgk

)op
.

(−)◦
oo
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To split or not to split

Remark
SDQBialgk is closed under sources in DQBialgk, i.e. if f : (U ′, ω′)→ (U, ω) is a
morphism in DQBialgk and (U, ω) ∈ SDQBialgk, then (U ′, ω′) ∈ SDQBialgk.

Example (SDQBialgk is a proper subcategory)
Let k[X ] be the polynomial algebra in one indeterminate X with the monoid
bialgebra structure, i.e. ∆(X ) = X ⊗ X and ε(X ) = 1. Let ϕ : k[X ]→ k not in
k[X ]◦ ( = k[X ]•). E.g. ϕ(X n) = n! . For all m, n, k ≥ 0 we can define inductively

ω(1⊗ X n ⊗ Xm) = ω(X n ⊗ 1⊗ Xm) = ω(X n ⊗ Xm ⊗ 1) := 1,
ω(X n ⊗ X k+1 ⊗ Xm) := ϕ(X k)−2ϕ(X n+k)ϕ(Xm+k).

The constructed ω is a reassociator. If ω ∈ k[X ]• ⊗ k[X ]• ⊗ k[X ]•, then

ϕ = ω(−⊗ X ⊗ X ) = (k[X ]• ⊗ evX ⊗ evX ) (ω) ∈ k[X ]•,

which is a contradiction. (k[X ],∆, ε, ω) is a dual quasi-bialgebra that is not split.
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Alternative descriptions
Lemma
Let A be associative and set (a ⇀ f )(b) := f (ba) and (f ↼ a)(b) := f (ab). The
following are equivalent for f ∈ A∗:

f ∈ A◦;
dim(A⇀ f ↼ A) <∞;
ker(f ) ⊇ I s.t. dim

(A
I
)
<∞.

Let A be any algebra. Ae := A⊗Aop. Consider the left action of T (Ae) on A∗ and
the right one on A respectively induced by

(l ⊗ r) I f := (l ⇀ (f ↼ r)) and a J (l ⊗ r) := r(al).

Lemma
The following are equivalent for f ∈ A∗:

f ∈ A•;
dim((Ae)⊗n I f ) <∞ (∀ n ∈ N);
exists a family {In | n ∈ N} of finite-codimensional subspaces of A such that
f (I0) = 0 and (In J Ae) ⊆ In−1 (∀ n ≥ 1).
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Thanks

Thank you
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