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Lie-Rinehart algebras

Fix a field k of characteristic 0. Assume that A is a commutative
k-algebra and denote by Der(A) the Lie algebra of k-derivations of A.

A over A is a triple (A, L,w) where L is a Lie algebra
which is also an A-module and w : L — Der(A) is a Lie algebra map (the
) such that for alla€ Aand X,Y € L

w@a-X)=a-X and [X;a-Y]=w(X)(a) Y +a-[X,Y]
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Fix a field k of characteristic 0. Assume that A is a commutative
k-algebra and denote by Der(A) the Lie algebra of k-derivations of A.

A over A is a triple (A, L,w) where L is a Lie algebra
which is also an A-module and w : L — Der(A) is a Lie algebra map (the
) such that for alla€ Aand X,Y € L

w@a-X)=a-X and [X;a-Y]=w(X)(a) Y +a-[X,Y]

Example: A is a vector bundle £ — M over a smooth
manifold M with a structure of Lie algebra in the space I'(£L) of
sections of £ and a morphism of vector bundles w : £ — T.M such

that [(w) : T(£) — I'(TM) is a Lie algebra map and
X, f-Y]=wX)(f)- Y +F-[X,Y]

for all £ € C>(M) and X, Y € T(L).



Universal enveloping algebra and filtered Hopf algebroids

The of a Lie-Rinehart algebra (A, L,w) is a
triple (VA(L), LA,LL) composed by a k-algebra V,(L), an algebra map
ta: A — Va(L) and a Lie algebra map ¢, : L — V(L) satisfying

t(a-X)=u(X)ea(a) and [LL(X),LA(a)} = a(w(X)(a)), (1)
that enjoys the following universal property:

For any triple (U, ¢4, ¢,) as above satisfying () there exists a unique
algebra map ® : V4(L) — U such that ® 01y = ¢pa and P o, = .
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{ ), n()] = 01X, Y1), [0(X), a] — w (X) (a) )
with ta: A= Va(L); a— aand ¢ 1 L= Va(l); X —=n(X) =11 X.

Example: If A= C>(M), then V,(Der(A)) is the algebra of differential
operators on M.

Explicitly, Va(L) :=
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The k-algebra V4(L) comes endowed with
(HA1) an (injective) k-algebra map va: A — Va(L);
(HA2) a cocommutative A-coring structure (VA(L)LA,A,E) given by

E(LA(Q)) = a, A(LA(Q)) = LA(a) Ra 1=1 Ra LA(Q),
E(LL(X)) = 0, A(LL(X)) = LL(X) ®A 1 + 1 ®A LL(X),
such that e(uv) = e(e(u)v) for all u,v € V4(L) and A factors through
an A-ring map A : Va(L) = Va(L) x4 Va(L);
(HAZ3) an inverse for the map can : V(L) ®4 Va(L) = Va(L) ®a Va(L),
can(u ®a4 v) = uv; ®4 vy, which is uniquely determined by
can (1 @4 1a(a)) = ta(a) ®a 1 =1 @4 ta(a),
canil(l Ra LL(X)) =1 Ra LL(X) — LL(X) Ra 1.

A pair of k-algebras (A,U) satisfying (HA1) - (HA2) is called a
. If it satisfies (HA3) as well, then it is a
(Schauenburg [S]).

[S] P. Schauenburg, Duals and doubles of quantum groupoids (X r-Hopf algebras), New trends in
Hopf algebra theory, Contemp. Math., vol. 267, Amer. Math. Soc., Providence, RI, 2000.



Even more:

(FHA1) The algebra Va(L) carries an

0 C FP(Va(L)) C F*(Va(L)) C FP(Va(L)) C -+

where F° (V4(L)) = A and FP (Va(L)) is the right A-submodule of V(L)
generated by products of at most p elements of ¢;(L). If we assume A to
be filtered with the F"A =0 for all n <0 and

F"A = A for all n > 0, then the structure maps of V(L) turn out to be
filtered. In particular, it does so the

8 :Va(L) = Va(L) @4 Va(L), urs can (1 @4 u) i= u_ @4 u,.
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e For a decreasingly filtered bimodule (M, F,M) over filtered algebras S
and R, M := lim (M/F,M) is a complete (S, R)-bimodule.
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The completion 2-functor
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p+g=n
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For a decreasingly filtered bimodule (M, F,M) over filtered algebras S
and R, M := lim (M/F,M) is a complete (g, ﬁ)—bimodule.

The has filtered k-algebras as 0-cells and filtered
bimodules over filtered algebras as {1,2}-cells. The horizontal
composition is given by the usual tensor product, filtered by

F.(M®g N) = Z im(F,M ®g FyN).
p+q=n
The has complete k-algebras as 0-cells and complete

bimodules over complete algebras as {1,2}-cells. The horizontal
composition is given by the completed tensor products

M&rN = Mor N.



The completion 2-functor

For a decreasingly filtered bimodule (M, F,M) over filtered algebras S
and R, M := lim (M/F,M) is a complete (g, ﬁ)—bimodule.

The has filtered k-algebras as 0-cells and filtered
bimodules over filtered algebras as {1,2}-cells. The horizontal
composition is given by the usual tensor product, filtered by

Fi(M@g N) =Y im(F,M @ F,N).
p+q=n
The has complete k-algebras as 0-cells and complete
bimodules over complete algebras as {1,2}-cells. The horizontal
composition is given by the completed tensor products

M&rN = Mor N.

The completion procedure induces a ,

O-cells: R—= R l-cells: sMz+——

2-cells - [f:M—>N}|—>[?:/\7I—>/T/}



Let (A,U) be a cocommutative Hopf algd with an admissible filtration.
Consider its full (right) linear dual U* = Hom_ 4(U, A) = lim (F(U)*).
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The full linear dual and complete Hopf algds

Let (A,U) be a cocommutative Hopf algd with an admissible filtration.
Consider its full (right) linear dual U* = Hom_ 4(U, A) = lim (F"U)").
[Ka]: U* inherits a natural decreasing filtration
G U)=U" and G, (U*)=Aan(F"(U)), n> 0.

such that U* is a complete commutative k-algebra w.r.t. the convolution
product. The counit induces

nN=st:AQA—-U", (a® b [ur e(bu)a]).

The unit and the multiplication of ¢/ induce a counit ¢, : /* — A and a
comultiplication A, : U* — U* @,U* which make of U* a coalgebra in
the monoidal category (ABimi‘7 ®A,A) of complete A-bimodules.

[Ka] M. Kapranov, Free Lie algebroids and the space of paths. Sel. Math., New ser. 13 (2007).
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Let (A,U) be a cocommutative Hopf algd with an admissible filtration.
Consider its full (right) linear dual U* = Hom_ 4(U, A) = lim (F"U)").
[Ka]: U* inherits a natural decreasing filtration
G U)=U" and G, (U*)=Aan(F"(U)), n> 0.

such that U* is a complete commutative k-algebra w.r.t. the convolution
product. The counit induces

nN=st:AQA—-U", (a® b [ur e(bu)a]).

The unit and the multiplication of ¢/ induce a counit ¢, : /* — A and a
comultiplication A, : U* — U* @,U* which make of U* a coalgebra in
the monoidal category (ABimi‘7 ®A,A) of complete A-bimodules.

Even more, the translation map ¢ induces a complete k-algebra map

S:U —-U*, frelu—e(f(u)uy)].

[Ka] M. Kapranov, Free Lie algebroids and the space of paths. Sel. Math., New ser. 13 (2007).



Summing up, U* is a complete commutative algebra with a diagram

Uu* Uu* @A Uu*
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of complete algebra maps such that

(CHA1l) (U*,A.,e.) is a coalgebra in ,Bim;

(CHA2) Sos=t,Sot=sand 8§ = Idy-;

(CHA3) > S(fh)f, = (toe,)(f) and Y AS(f) = (soe.)(f).
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Summing up, U* is a complete commutative algebra with a diagram

Uu* Uu* @A Uu*

0y (1

S

A<~— <;t€*

of complete algebra maps such that

(CHA1l) (U*,A.,e.) is a coalgebra in ,Bim;

(CHA2) Sos=t,Sot=sand 8§ = Idy-;

(CHA3) > S(fh)f, = (toe,)(f) and Y AS(f) = (soe.)(f).

A consists of a pair of complete commutative
algebras (A, H) together with a diagram of algebra maps () that satisfy
(CHA1) - (CHA3). The loop map is called the .

Equivalently, a complete Hopf algebroid is
(see e.g. [De]).

[De] E.S. Devinatz, Morava's change of rings theorem. The Cech centennial (Boston, MA, 1993),
pp. 83-118, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995.



Let (A,U) be a cocommutative Hopf algebroid.

[EG]: The category A, of those right
U-modules whose underlying A-module is finitely generated and projective
is a symmetric rigid monoidal k-linear category and the forgetful functor
w : Ay — proj(A) is a strict monoidal additive faithful functor. As a
consequence, the provides us for a
commutative Hopf algebroid (A,U°) (the ) and a strict monoidal
functor x : Ay — AY".

k
) B 6{9AJ;J41, M Tm M
Namely, U° := - B - - Y
(@7, f(m)—pof®@r, m|loec N meMfeTyy)

where Ty y = Homy,, (M, N) and Ty = Ty u. Furthermore, there is a
canonical A ® A-algebra map

C:U = U, p@1, m— [ur— o(m-u)]

whose injectivity implies that x is an isomorphism.

[EG] L. El Kaoutit, J. Gémez-Torrecillas, On the finite dual of a cocommutative Hopf algebroid.
Application to linear differential matrix equations. Preprint, arXiv:1607.07633v2 (2016)
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is a symmetric rigid monoidal k-linear category and the forgetful functor
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where Ty y = Homy,, (M, N) and Ty = Twy u. Furthermore, there is a
canonical A ® A-algebra map

C:U = U, @1, m— [u— @(m-u)]

whose injectivity implies that x is an isomorphism.

[EG] L. El Kaoutit, J. Gémez-Torrecillas, On the finite dual of a cocommutative Hopf algebroid.
Application to linear differential matrix equations. Preprint, arXiv:1607.07633v2 (2016).



Assume that (A,U) is endowed with an admissible filtration {F"U},>o.
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The main morphism of complete Hopf algds

Assume that (A,U) is endowed with an admissible filtration {F"U},>o.

The commutative Hopf algebroid (A,2°) can be filtered with the
Go(U°) =U° and G,(U°) = ker(e,)" and its
completion (A,U°) is a complete Hopf algebroid (A discretely filtered).



The main morphism of complete Hopf algds

Assume that (A,U) is endowed with an admissible filtration {F"U},>o.

The commutative Hopf algebroid (A,2°) can be filtered with the
Go(U°) =U° and G,(U°) = ker(g,)" and its
completion (A,U°) is a complete Hopf algebroid (A discretely filtered).

The canonical map ¢ : U° — U* is filtered and hence it can be lifted to a
morphism ¢ : U° — U* of complete Hopf algebroids such that

¢ U

N

commutes, where v is the completion map.

Z/{O
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If V4(L)° is separated and Eis an isomorphism, ¢ is injective. It follows
then that V4(L)° can be seen as a formal groupoid which integrates L and
that is “canonically” associated with a groupoid whose category of

representations is equivalent to the category of modules of L.
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induced one,



Idea

If V4(L)° is separated and Z‘is an isomorphism, ¢ is injective. It follows

—

then that V4(L)° can be seen as a formal groupoid which integrates L and
that is “canonically” associated with a groupoid whose category of
representations is equivalent to the category of modules of L.

Proposition

Let (A,U) be a cocommutative Hopf algebroid with an admissible

filtration and assume that ¢ : U° — U* is injective. TFAE

(a) C:U° — U is a filtered isomorphism,

(b) Zis surjective and the augmentation filtration on {/° coincides with the
induced one,

Moreover, the following assertions are equivalent as well

(¢) C:U° = U* is an homeomorphism,

(d) Z: U —UuU*is open and injective and U/° is dense in U*,

(e) the augmentation topology on U° is equivalent to the induced one and
U° is dense in U*.



If we endow A ® A with the [C-adic filtration induced by
K :=ker(m: A® A — A), then the algebra extension n: A® A — U* is

filtered and we may consider 7 : AQA U




If we endow A ® A with the [C-adic filtration induced by
K :=ker(m: A® A — A), then the algebra extension n: A® A — U* is

filtered and we may consider 7 : AQA U

If the morphism 7) is a filtered isomorphism, then all the assertions from
(a) to (e) are equivalent.




If we endow A ® A with the [C-adic filtration induced by
K :=ker(m: A® A — A), then the algebra extension n: A® A — U* is

filtered and we may consider 7 : AQA U

If the morphism 7) is a filtered isomorphism, then all the assertions from
(a) to (e) are equivalent.

Example: Let A be a commutative k-algebra such that the modules
AT (A) := (A® A)/KK of k-jets over A are finitely generated and
projective. By Krasil'shchik [K], Diff (A, A) = *J*(A). Then ij
becomes a filtered isomorphism between @ =J(A),

, and the dual of V,(Der(A)) = Diff(A),
(e.g. A=C[X]).

[K] 1. S. Krasil'shchik, Calculus over commutative algebras: a concise user guide. Algebraic
aspects of differential calculus. Acta Appl. Math. 49 (1997).



Ref. Nestruev [N, §§11.59-11.62].

Let M be a smooth manifold and A = C>(M). Let P be a projective
A-module, which is the same as the module of sections of a vector bundle
wp: € = M. Let p, C A be the maximal ideal of A associated with the
point z € M.

Set J!P := P/u!t* P with projection P — J'P : p — [p], :== p + plP.
J'P =, JLP is a vector bundle and it is called the bundle of /-jets of
the bundle 7p. Its projection is

p: )P — M, JP—ze M

The module of smooth sections of the vector bundle 7, is called the
module of /-jets of the bundle 7p and it is denoted by J'(P). The
elements of this module are the /-jets of P.

[N]  J. Nestruev, Smooth manifolds and observables. Graduate Texts in Mathematics, 220.
Springer-Verlag, New York, 2003.
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Take as P the algebra A itself. [N, §9.64]: JJM :=C>(M)/ul™ is the
vector space of /-jets of smooth functions on M at z € M.

JIM =, JLM is the manifold of I-jets and 7 1 J'M — M is the
bundle of /-jets of smooth functions on M ([N, 10.11(IX)]).

[N, 9.67]: P, Q two A-modules and set Diff,(P, Q) is the A-module of
differential operators of order < [ acting from P to Q.

[N, 11.46]: J'(M) is the module of sections of the vector bundle m ;.
This is the module of /-jets of smooth functions on M. With respect to
differential operators, they play a role similar to the role of the Kahler
module with respect to derivation.

[N, 11.64]: Diff (P, Q) = Homa(J'(P), Q).

[N]  J. Nestruev, Smooth manifolds and observables. Graduate Texts in Mathematics, 220.
Springer-Verlag, New York, 2003.
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Even when ( is injective and A =k, Z may not be an isomorphism.
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Not an example

Even when ( is injective and A =k, Emay not be an isomorphism.
Example (from [ES])

Let L = CX be the one dimensional (abelian) complex Lie algebra.
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arXiv:1705.03433, (2017).



Not an example

Even when ( is injective and A =k, Emay not be an isomorphism.

Example (from [ES])

Let L = CX be the one dimensional (abelian) complex Lie algebra.

e |t is trivially a Lie-Rinehart algebra over C

e Its universal enveloping algebra is the Hopf algebra C[X]

The finite dual of C[X] coincides with the usual Sweedler dual C[X]°
The morphism ( is the inclusion C[X]° C C[X]*

Let £ € C[X]° be given by &£(X") = 0,1 (Kronecker delta). Either the

augmentation filtration on C[X]° and the filtration on C[X]* are the
(& )-adic ones
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Not an example

Even when ( is injective and A =k, Emay not be an isomorphism.

Example (from [ES])

Let L = CX be the one dimensional (abelian) complex Lie algebra.

e |t is trivially a Lie-Rinehart algebra over C

e Its universal enveloping algebra is the Hopf algebra C[X]

The finite dual of C[X] coincides with the usual Sweedler dual C[X]°
The morphism ( is the inclusion C[X]° C C[X]*

Let £ € C[X]° be given by &£(X") = 0,1 (Kronecker delta). Either the

augmentation filtration on C[X]° and the filtration on C[X]* are the
(& )-adic ones

In this case, it turns out that C is surjective but the (&)-adic filtration on
C[X]° is strictly finer then the one induced by C[X]*, whence { cannot be
a filtered isomorphism (in fact, not even an homeomorphism).

[ES] L. El Kaoutit, P. Saracco, Comparing Topologies on Linearly Recursive Sequences. Preprint,
arXiv:1705.03433, (2017).
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