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• The integration problem

Lie
Groups

Differentiation at the identity // Lie
AlgebrasLie 3rd Theorem

oo

Lie
Groupoids

Differentiation at the identities // Lie
Algebroids

• Kapranov [K]: for a suitable Lie-Rinehart algebra (A, L, ω), VA(L)∗ is
a topological bialgebroid and its formal spectrum is a formal groupoid
which integrates L.

• VA(L) cocommutative Hopf algd  VA(L)◦ commutative Hopf algd

VA(L)◦ ? VA(L)∗

[K] M. Kapranov, Free Lie algebroids and the space of paths. Sel. Math., New ser. 13 (2007).

[M] K. Mackenzie, General theory of Lie groupoids and Lie algebroids. London Mathematical
Society Lecture Note Series, 213. Cambridge University Press, Cambridge, 2005.
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Lie-Rinehart algebras

Fix a field k of characteristic 0. Assume that A is a commutative
k-algebra and denote by Der(A) the Lie algebra of k-derivations of A.

A Lie-Rinehart algebra over A is a triple (A, L, ω) where L is a Lie algebra
which is also an A-module and ω : L→ Der(A) is a Lie algebra map (the
anchor) such that for all a ∈ A and X ,Y ∈ L

ω(a · X ) = a · X and [X , a · Y ] = ω(X )(a) · Y + a · [X ,Y ].

Example: A Lie algebroid is a vector bundle L →M over a smooth
manifoldM with a structure of Lie algebra in the space Γ(L) of
sections of L and a morphism of vector bundles ω : L → TM such
that Γ(ω) : Γ(L)→ Γ(TM) is a Lie algebra map and

[X , f · Y ] = ω(X )(f ) · Y + f · [X ,Y ]

for all f ∈ C∞(M) and X ,Y ∈ Γ(L).
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Universal enveloping algebra and filtered Hopf algebroids

The universal enveloping algebra of a Lie-Rinehart algebra (A, L, ω) is a
triple

(
VA(L), ιA, ιL

)
composed by a k-algebra VA(L), an algebra map

ιA : A→ VA(L) and a Lie algebra map ιL : L→ VA(L) satisfying

ιL(a · X ) = ιL(X )ιA(a) and
[
ιL(X ), ιA(a)

]
= ιA(ω(X )(a)), (†)

that enjoys the following universal property:

For any triple (U, φA, φL) as above satisfying (†) there exists a unique
algebra map Φ : VA(L)→ U such that Φ ◦ ιA = φA and Φ ◦ ιL = φL.

Explicitly, VA(L) := TA (A⊗ L)〈
[η(X), η(Y )] − η([X ,Y ]) , [η(X), a] − ω (X) (a)

〉
with ιA : A→ VA(L); a 7→ a and ιL : L→ VA(L); X 7→ η(X ) := 1⊗ X .
Example: If A = C∞(M), then VA(Der(A)) is the algebra of differential

operators onM.
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The k-algebra VA(L) comes endowed with
(HA1) an (injective) k-algebra map ιA : A→ VA(L);
(HA2) a cocommutative A-coring structure

(
VA(L)

ιA
,∆, ε

)
given by

ε(ιA(a)) = a, ∆(ιA(a)) = ιA(a)⊗A 1 = 1⊗A ιA(a),
ε(ιL(X )) = 0, ∆(ιL(X )) = ιL(X )⊗A 1 + 1⊗A ιL(X ),

such that ε(uv) = ε(ε(u)v) for all u, v ∈ VA(L) and ∆ factors through
an A-ring map ∆ : VA(L)→ VA(L)×A VA(L);

(HA3) an inverse for the map can : VA(L)⊗A VA(L)→ VA(L)⊗A VA(L),
can(u ⊗A v) = uv1 ⊗A v2, which is uniquely determined by

can−1(1⊗A ιA(a)) = ιA(a)⊗A 1 = 1⊗A ιA(a),
can−1(1⊗A ιL(X )) = 1⊗A ιL(X )− ιL(X )⊗A 1.

A pair of k-algebras (A,U) satisfying (HA1) - (HA2) is called a
cocommutative (right) bialgebroid. If it satisfies (HA3) as well, then it is a
cocommutative (right) Hopf algebroid (Schauenburg [S]).

[S] P. Schauenburg, Duals and doubles of quantum groupoids (×R -Hopf algebras), New trends in
Hopf algebra theory, Contemp. Math., vol. 267, Amer. Math. Soc., Providence, RI, 2000.
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Even more:
(FHA1) The algebra VA(L) carries an exhaustive ascending filtration

0 ⊂ F 0 (VA(L)) ⊂ F 1 (VA(L)) ⊂ F 2 (VA(L)) ⊂ · · ·

where F 0 (VA(L)) = A and F p (VA(L)) is the right A-submodule of VA(L)
generated by products of at most p elements of ιL(L). If we assume A to
be filtered with the discrete filtration F nA = 0 for all n < 0 and
F nA = A for all n ≥ 0, then the structure maps of VA(L) turn out to be
filtered. In particular, it does so the translation map

δ : VA(L)→ VA(L)⊗A VA(L), u 7→ can−1(1⊗A u) := u− ⊗A u+.

(FHA2) If L is a finitely generated and projective A-module, then the
quotient modules F n (VA(L)) /F n−1 (VA(L)) are finitely generated and
projective right A-modules as well (e.g. L = Γ(L), L a Lie algebroid).

A cocommutative Hopf algebroid (A,U) satisfying (FHA1) is said to be
filtered. If it satisfies (FHA2) as well, then it is said to have an admissible
filtration.
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The completion 2-functor
• For a decreasingly filtered bimodule (M,FnM) over filtered algebras S
and R, M̂ := lim←− (M/FnM) is a complete

(
Ŝ, R̂

)
-bimodule.

• The bicategory Bimflt
k has filtered k-algebras as 0-cells and filtered

bimodules over filtered algebras as {1, 2}-cells. The horizontal
composition is given by the usual tensor product, filtered by

Fn(M ⊗R N) =
∑
p+q=n

im(FpM ⊗R FqN).

• The bicategory Bimc
k has complete k-algebras as 0-cells and complete

bimodules over complete algebras as {1, 2}-cells. The horizontal
composition is given by the completed tensor products

M ⊗̂R N = M̂ ⊗R N.

• The completion procedure induces a bifunctor (̂−) : Bimflt
k → Bimc

k,

0-cells : R � // R̂ 1-cells : SMR
� //

ŜM̂R̂

2-cells :
[
f : M → N

]
� //

[
f̂ : M̂ → N̂

]
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ŜM̂R̂

2-cells :
[
f : M → N

]
� //

[
f̂ : M̂ → N̂

]
7 / 17



The completion 2-functor
• For a decreasingly filtered bimodule (M,FnM) over filtered algebras S
and R, M̂ := lim←− (M/FnM) is a complete

(
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)
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The full linear dual and complete Hopf algds
Let (A,U) be a cocommutative Hopf algd with an admissible filtration.
Consider its full (right) linear dual U∗ = Hom−,A(U ,A) ∼= lim←− (F n(U)∗).

Kapranov [Ka]: U∗ inherits a natural decreasing filtration

G0 (U∗) = U∗ and Gn+1 (U∗) = Ann (F n(U)) , n ≥ 0.

such that U∗ is a complete commutative k-algebra w.r.t. the convolution
product. The counit induces

η = s ⊗ t : A⊗ A→ U∗, (a ⊗ b 7→ [u 7→ ε(bu)a]).

The unit and the multiplication of U induce a counit ε∗ : U∗ → A and a
comultiplication ∆∗ : U∗ → U∗ ⊗̂A U∗ which make of U∗ a coalgebra in
the monoidal category

(
ABimc

A, ⊗̂A ,A
)
of complete A-bimodules.

Even more, the translation map δ induces a complete k-algebra map

S : U∗ → U∗, f 7→ [u 7→ ε(f (u−)u+)] .

[Ka] M. Kapranov, Free Lie algebroids and the space of paths. Sel. Math., New ser. 13 (2007).
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Summing up, U∗ is a complete commutative algebra with a diagram

A s //
t // U∗ε∗oo

S

ZZ
∆∗ // U∗ ⊗̂A U∗

(†)

of complete algebra maps such that
(CHA1) (U∗,∆∗, ε∗) is a coalgebra in ABimc

A;
(CHA2) S ◦ s = t, S ◦ t = s and S2 = IdU∗ ;
(CHA3)

∑
S(f1)f2 = (t ◦ ε∗)(f ) and

∑
f1S(f2) = (s ◦ ε∗)(f ).

A complete Hopf algebroid consists of a pair of complete commutative
algebras (A,H) together with a diagram of algebra maps (†) that satisfy
(CHA1) - (CHA3). The loop map is called the antipode.

Equivalently, a complete Hopf algebroid is a cogroupoid object in the
category of complete commutative algebras (see e.g. [De]).

[De] E. S. Devinatz, Morava’s change of rings theorem. The Čech centennial (Boston, MA, 1993),
pp. 83–118, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995.
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The finite dual
Let (A,U) be a cocommutative Hopf algebroid.

El Kaoutit, Gómez-Torrecillas [EG]: The category AU of those right
U -modules whose underlying A-module is finitely generated and projective
is a symmetric rigid monoidal k-linear category and the forgetful functor
ω : AU → proj(A) is a strict monoidal additive faithful functor. As a
consequence, the Tannaka reconstruction process provides us for a
commutative Hopf algebroid (A,U◦) (the finite dual) and a strict monoidal
functor χ : AU → AU

◦ .

Namely, U◦ :=
⊕

M∈AU
M∗ ⊗TM M

〈ϕ⊗TN f (m)− ϕ ◦ f ⊗TM m | ϕ ∈ N∗,m ∈ M, f ∈ TM,N〉
where TM,N = HomAU (M,N) and TM = TM,M . Furthermore, there is a
canonical A⊗ A-algebra map

ζ : U◦ → U∗, ϕ⊗TM m 7→ [u 7→ ϕ(m · u)]
whose injectivity implies that χ is an isomorphism.

[EG] L. El Kaoutit, J. Gómez-Torrecillas, On the finite dual of a cocommutative Hopf algebroid.
Application to linear differential matrix equations. Preprint, arXiv:1607.07633v2 (2016).
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The main morphism of complete Hopf algds

Assume that (A,U) is endowed with an admissible filtration {F nU}n≥0.

The commutative Hopf algebroid (A,U◦) can be filtered with the
augmentation filtration G0(U◦) = U◦ and Gn(U◦) = ker(ε◦)n and its
completion

(
A, Û◦

)
is a complete Hopf algebroid (A discretely filtered).

Theorem

The canonical map ζ : U◦ → U∗ is filtered and hence it can be lifted to a
morphism ζ̂ : Û◦ → U∗ of complete Hopf algebroids such that

U◦ ζ //

γ !!

U∗

Û◦
ζ̂

==

commutes, where γ is the completion map.
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Idea

If VA(L)◦ is separated and ζ̂ is an isomorphism, ζ is injective. It follows
then that V̂A(L)◦ can be seen as a formal groupoid which integrates L and
that is “canonically” associated with a groupoid whose category of
representations is equivalent to the category of modules of L.

Proposition

Let (A,U) be a cocommutative Hopf algebroid with an admissible
filtration and assume that ζ : U◦ → U∗ is injective. TFAE
(a) ζ̂ : Û◦ → U∗ is a filtered isomorphism,
(b) ζ̂ is surjective and the augmentation filtration on U◦ coincides with the

induced one,
Moreover, the following assertions are equivalent as well
(c) ζ̂ : Û◦ → U∗ is an homeomorphism,
(d) ζ̂ : Û◦ → U∗ is open and injective and U◦ is dense in U∗,
(e) the augmentation topology on U◦ is equivalent to the induced one and
U◦ is dense in U∗.
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If we endow A⊗ A with the K-adic filtration induced by
K := ker (m : A⊗ A→ A), then the algebra extension η : A⊗ A→ U∗ is
filtered and we may consider η̂ : Â⊗ A→ U∗.

If the morphism η̂ is a filtered isomorphism, then all the assertions from
(a) to (e) are equivalent.

Example: Let A be a commutative k-algebra such that the modules
AJ k(A) := (A⊗ A)/Kk+1 of k-jets over A are finitely generated and
projective. By Krasil’shchik [K], Diffk(A,A) ∼= ∗J k(A). Then η̂
becomes a filtered isomorphism between Â⊗ A = J (A), the algebra of
infinite jets of A, and the dual of VA(Der(A)) = Diff(A), the algebra of
differential operators on A (e.g. A = C[X ]).

[K] I. S. Krasil’shchik, Calculus over commutative algebras: a concise user guide. Algebraic
aspects of differential calculus. Acta Appl. Math. 49 (1997).
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Ref. Nestruev [N, §§11.59-11.62].
LetM be a smooth manifold and A = C∞(M). Let P be a projective
A-module, which is the same as the module of sections of a vector bundle
πP : E →M. Let µz ⊆ A be the maximal ideal of A associated with the
point z ∈M.
Set J l

zP := P/µl+1
z P with projection P � J l

zP : p 7→ [p]lz := p + µl+1
z P.

J lP :=
⋃

z∈M J l
zP is a vector bundle and it is called the bundle of l-jets of

the bundle πP . Its projection is

πJ lP : J lP →M, J l
zP → z ∈M

The module of smooth sections of the vector bundle πJ lP is called the
module of l-jets of the bundle πP and it is denoted by J l(P). The
elements of this module are the l-jets of P.

[N] J. Nestruev, Smooth manifolds and observables. Graduate Texts in Mathematics, 220.
Springer-Verlag, New York, 2003.
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Take as P the algebra A itself. [N, §9.64]: J l
zM := C∞(M)/µl+1

z is the
vector space of l-jets of smooth functions onM at z ∈M.
J lM :=

⋃
z∈M J l

zM is the manifold of l-jets and πJ lM : J lM→M is the
bundle of l-jets of smooth functions onM ([N, 10.11(IX)]).
[N, 9.67]: P,Q two A-modules and set Diff l(P,Q) is the A-module of
differential operators of order ≤ l acting from P to Q.
[N, 11.46]: J l(M) is the module of sections of the vector bundle πJ lM.
This is the module of l-jets of smooth functions onM. With respect to
differential operators, they play a role similar to the role of the Kahler
module with respect to derivation.
[N, 11.64]: Diff l(P,Q) ∼= HomA(J l(P),Q).

[N] J. Nestruev, Smooth manifolds and observables. Graduate Texts in Mathematics, 220.
Springer-Verlag, New York, 2003.
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Not an example
Even when ζ is injective and A = k, ζ̂ may not be an isomorphism.

Example (from [ES])

Let L = CX be the one dimensional (abelian) complex Lie algebra.
• It is trivially a Lie-Rinehart algebra over C
• Its universal enveloping algebra is the Hopf algebra C[X ]
• The finite dual of C[X ] coincides with the usual Sweedler dual C[X ]◦

• The morphism ζ is the inclusion C[X ]◦ ⊆ C[X ]∗

• Let ξ ∈ C[X ]◦ be given by ξ(X n) = δn,1 (Kronecker delta). Either the
augmentation filtration on C[X ]◦ and the filtration on C[X ]∗ are the
〈 ξ 〉-adic ones

In this case, it turns out that ζ̂ is surjective but the 〈ξ〉-adic filtration on
C[X ]◦ is strictly finer then the one induced by C[X ]∗, whence ζ̂ cannot be
a filtered isomorphism (in fact, not even an homeomorphism).

[ES] L. El Kaoutit, P. Saracco, Comparing Topologies on Linearly Recursive Sequences. Preprint,
arXiv:1705.03433, (2017).
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Thank you
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