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INTRODUCTION
Hopf algebras are nowadays recognized as
an important field of study, also because of
their extraordinary ubiquity. For example, in
(non)commutative geometry they are the natural
analogue of groups: the quantum groups.

Roughly speaking, they represent spaces with ad-
ditional structure: a commutative Hopf algebra
is an algebra (the space) with an additional co-
multiplication (the composition law), a counit (the
neutral element) and an antipode (the inverses).

Quasi and coquasi-bialgebras (informally, quasi-
quantum monoids) have been introduced in the
90s by Drinfeld and Majid in connection with
Quantum Field Theory. A natural question is:

What could be a “good” analogue of the
antipode in this context?

(CO)QUASI-BIALGEBRAS AND (CO)QUASI-HOPF ALGEBRAS
A quasi-bialgebra is an algebra A with ∆ : A→ A⊗A and ε : A→ k algebra maps and Φ ∈ A⊗A⊗A
invertible 3-cocycle such that Φ · (∆⊗A)(∆(a)) = (A⊗∆)(∆(a)) · Φ for all a ∈ A.
A quasi-Hopf algebra is a quasi-bialgebra A with s : A→ A anti-algebra map and α, β ∈ A such that

a1βs(a2) = βε(a), s(a1)αa2 = αε(a), Φ1βs(Φ2)αΦ3 = 1 for all a ∈ A.

Dualizing these definitions, one gets those of coquasi-bialgebras and coquasi-Hopf algebras.
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CHARACTERIZING ANTIPODES
Hopf algebras over a field k are:

(B) Bialgebras H whose Hopf modules satisfy the
Structure Theorem

M ∼= M coH ⊗H;

(N) Coalgebras whose finite-dimensional como-
dules form a rigid monoidal category with
monoidal underlying functor;

(R) Algebras whose modules form a (right) clo-
sed monoidal category with monoidal under-
lying functor preserving internal homs.

PREANTIPODES
A preantipode [3] for a quasi-bialgebra A is a linear endomorphism S such that

a1S(ba2) = ε(a)S(b) = S(a1b)a2, Φ1S(Φ2)Φ3 = 1.

A preantipode [1] for a coquasi-bialgebra H is a linear endomorphism S such that

S(h1)1h2 ⊗ S(h1)2 = 1⊗ S(h), S(h2)1 ⊗ h1S(h2)2 = S(h)⊗ 1, ω(h1 ⊗ S(h2)⊗ h3) = ε(h).

WHAT WAS KNOWN
If A is a (co)quasi-Hopf algebra then

(B) There exists a notion of M coA for every M ∈
AM

A
A (resp. AMA

A) such that

M ∼= M coA ⊗A

(N) The category fMA (resp. AMf ) is rigid:

M? = Homk(M,k).

(R) The category MA (resp. AM) is closed:

hom(M,N) = Homk(M,N).

What about the converses?

THE MAIN RESULTS

Structure theorem for quasi-Hopf modules [3]

Let A be a quasi-bialgebra and AM
A
A :=
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The following are equivalent

M ∼= M ⊗A for all M ;(α)

A⊗A ∼=
A⊗A

(A⊗A)A+
⊗A;(β)

A admits a preantipode.(γ)

(B) holds for quasi-bialgebras with preantipode.

Structure thm for coquasi-Hopf bicomodules [1]

Let H be a coquasi-bialgebra, HMH
H :=

(
HMH

)
H

.

ForM in HMH
H , M coH = {m ∈M | δ(m) = m⊗ 1}

is a left comodule.
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The following are equivalent

M ∼= M coH ⊗H for all M ;(α′)

(H ⊗H)coH ⊗H ∼= H ⊗H;(β′)

H admits a preantipode.(γ′)

(B) holds for coquasi-bialgebras with preantipode.

Reconstruction theorem for coquasi-bialgebras
with preantipode [2]

Let C be a rigid monoidal category with a quasi-
monoidal functor ω : C →Mf . The representing
object H of the functor Nat(ω,−⊗ω) is a (univer-
sal) coquasi-bialgebra with preantipode:
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If ω(X?) ∼= ω(X)∗ then H is coquasi-Hopf. The
reverse constructions hold as well.

(N) holds for coquasi-bialgebras with preantipode.

OPEN QUESTIONS

1) AM is right closed with internal hom AHom(A⊗
N,−). Can quasi-bialgebras with preantipode be
characterized via an analogue of (R)?

2) The functor−⊗A is part of an adjoint triple with
right adjoint AHom

A
A(A⊗A,−). What can we say

if −⊗A is just Frobenius?
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