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Abstract. We prove how the universal enveloping algebra constructions for Lie-Rinehart
algebras and anchored Lie algebras are naturally left adjoint functors. This provides
a conceptual motivation for the universal properties these constructions satisfy. As a
supplement, the categorical approach offers new insights into the definitions of Lie-Rinehart
algebra morphisms, of modules over Lie-Rinehart algebras and of the infinitesimal gauge
algebra of a module.
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Introduction

It is well-known that any associative and unital algebra A over a field k admits a natural
Lie algebra structure with bracket given by the commutator bracket. Usually, one writes
L(A) for the Lie algebra associated with A and the assignment A 7→ L(A) turns out to be
functorial from the category of k-algebras Algk to the category of Lie algebras Liek. In the
opposite direction, one defines the universal enveloping k-algebra of a given a Lie algebra L
over k to be an associative and unital algebra U(L) together with a natural morphism of
Lie algebras L→ L(U(L)) which is universal from L to the functor L (see, for instance, [2,
§2.1]). Equivalently, the universal enveloping algebra construction provides a left adjoint
U : Liek → Algk to the associated Lie algebra functor L.
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Paolo Saracco is a Chargé de Recherches of the Fonds de la Recherche Scientifique - FNRS and a member
of the “National Group for Algebraic and Geometric Structures and their Applications” (GNSAGA-INdAM).

This version of the article has been accepted for publication after peer review, but is not the Version of
Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is
available online at: doi.org/10.1007/s00009-022-01985-9. Use of this Accepted Version is subject to the
publisher’s Accepted Manuscript terms of use.

https://doi.org/10.1007/s00009-022-01985-9
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms


2 PAOLO SARACCO

Among Lie algebras, a family that particularly attracted the attention of the community
is that of Lie-Rinehart algebras. Informally, a Lie-Rinehart algebra over a commutative
algebra R (also called (k, R)-Lie algebra) is a Lie algebra L together with an additional
structure that reflects the interaction between the algebra of smooth functions on a smooth
manifold M and the Lie algebra of smooth vector fields on M. Rinehart himself gave
an explicit construction of what he called the universal enveloping algebra U(R,L) of a
Lie-Rinehart algebra in [18] and proved a Poincaré-Birkhoff-Witt theorem for the latter.
Other equivalent constructions are provided in [6, §3.2], [10, page 64], [20, §18]. The
universal property of U(R,L) as an algebra is spelled out in [10, page 64] and [15, page 174]
(where it is attributed to Feld’man). Its universal property as an R-bialgebroid is codified
in the Cartier-Milnor-Moore Theorem for U(R,L) proved in [17, §3], where it is shown that
the construction of the universal enveloping algebra provides a left adjoint to the functor
sending any cocommutative bialgebroid to its Lie-Rinehart algebra of primitive elements. A
similar universal property as anchored R-ring is presented in [7, Proposition 2.9]. Further
algebraic and categorical properties and applications are investigated in [1, 5, 8, 9, 10] and in
[4, Corollary 4.2.4], under suitable hypotheses, a commutative Hopf algebroid (geometrically,
a groupoid) with the “same” representation theory as L is constructed out of U(R,L).

However, as far as the author is aware, nowhere it is shown that the construction of
the so-called “universal enveloping algebra” provides a left adjoint functor. In fact, the
universal property of U(R,L) mentioned above involves at the same time a morphism of
k-algebras R→ U(R,L) and a morphism of Lie algebras L→ L

(
U(R,L)

)
which need to

be compatible in a suitable way and there seems to be no natural functor from the category
of k-algebras (or that of R-rings) to the category of Lie-Rinehart algebras over R which
may play the role of the right adjoint functor.

Our aim is to make up for this lack by explicitly providing such a right adjoint. As a
consequence, our results provide a conceptual motivation for addressing U(R,L) as the
universal enveloping R-ring of L. Notice also that being able to identify the universal
enveloping algebra functor as a left adjoint offers a number of additional informations
from the categorical point of view. For instance, that it preserves all colimits that exists
in the category of Lie-Rinehart algebras over R. Furthermore, we will comment on how
the categorical approach and the constructions we introduce allow us to re-interpret and
explain the notions of modules over a Lie-Rinehart algebra L, of morphisms of Lie-Rinehart
algebras over different bases and of the infinitesimal gauge algebra of an A-module M with
respect to a Lie-Rinehart algebra L, as introduced in [10].

Even if our main objective concerns Lie-Rinehart algebras and their universal enveloping
algebras, we will initially work in the more general framework of anchored Lie algebras
as introduced in [19, §2]. Our motivation for this choice is twofold. Firstly, the non-
commutative setting of anchored Lie algebras is, at the same time, general enough to
become easier to be handle and close enough to our target to provide most of the results
we need in order to deal with the commutative setting. Secondly, anchored Lie algebras
subsume several important examples of Lie algebras acting by derivations on associative
algebras which are not necessarily commutative (any Lie algebra acts by derivations on
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its universal enveloping algebra and any associative algebra acts by inner derivations on
itself) and they proved to be of key importance in the study of the structure of primitively
generated bialgebroids over a non-commutative base (see [19, §4]). Therefore, they deserve
to be studied more closely. In addition, it is noteworthy that our approach via anchored Lie
algebras allows also to re-interpret the algebra of differential operators of a representation
of a Lie algebra, as introduced by Jacobson in [11, page 175], and to provide a conceptual
interpretation for its universal property (see discussion after Theorem 2.6).

Concretely, after an introductory Section 1, where we collect the basics on anchored Lie
algebras and Lie-Rinehart algebras that we need to keep the presentation self-contained, in
Section 2 we explicitly construct a functor LA : RingAe → AnchLieA which we prove to be the
natural right adjoint to the universal enveloping Ae-ring functor UA : AnchLieA → RingAe

provided by the Connes-Moscovici’s bialgebroid construction in [19, §2.2] (see Theorem
2.8). Section 3 is devoted to adapt the results of Section 2 to the commutative framework
of Lie-Rinehart algebras and so to construct a right adjoint LA : RingA → LieRinA to the
universal enveloping algebra functor UA : LieRinA → RingA (see Theorem 3.4). We conclude
with a brief reflection in Section 4 concerning the definitions of morphisms of Lie-Rinehart
algebras over different bases, of modules over a Lie-Rinehart algebra and of the Lie-Rinehart
algebra of infinitesimal gauge transformations of an A-module.

Conventions. All over the paper, we assume a certain familiarity of the reader with the
language of monoidal categories and of (co)monoids therein (see, for example, [13, VII]).

We work over a ground field k of characteristic 0. All vector spaces are assumed to be
over k. The unadorned tensor product ⊗ stands for ⊗k. All (co)algebras and bialgebras are
intended to be k-(co)algebras and k-bialgebras, that is to say, (co)algebras and bialgebras
in the symmetric monoidal category of vector spaces (Vectk,⊗,k). Every (co)module has an
underlying vector space structure. Identity morphisms IdV are often denoted simply by V .

If f : U → V is a k-linear map, we denote by f ∗ the morphism Homk (V,W ) →
Homk (U,W ) , g 7→ g ◦ f, and by f∗ the morphism Homk (W,U)→ Homk (W,V ) , g 7→ f ◦ g.

Unless stated otherwise, A denotes a not necessarily commutative algebra over k and Ao

denotes its opposite algebra. When looking at a ∈ A as an element in Ao, we will denote
it by ao. The Lie algebra associated with A, which by abuse of notation we denote by A
again, is the Lie algebra which has as underlying k-vector space A itself and bracket given
by the commutator [a, b] = ab− ba for all a, b ∈ A.

If C is a k-coalgebra, we take advantage of the Heyneman-Sweedler notation ∆(c) =∑
c1 ⊗ c2 to deal explicitly with the comultiplication.
Finally, we will make use of the fact that algebraic forgetful functors create limits in the

sense of [13, V.1, Definition]. In particular, the pullback of a diagram of vector spaces (or
modules) can be computed by performing the corresponding pullback in the category of sets
and by endowing it with the unique structure that makes of it a vector space (or module).

1. Preliminaries

We collect some facts about bimodules, rings, Lie-Rinehart algebras and anchored Lie
algebras that will be needed in the sequel. The aim is to keep the exposition self-contained.



4 PAOLO SARACCO

1.1. A-bimodules and A-rings. Given a k-algebra A, the category of A-bimodules forms
a non-strict monoidal category (AModA,⊗A, A, a, l, r). Nevertheless, all over the paper we
will behave as if the structural natural isomorphisms

aM,N,P : (M ⊗A N)⊗A P →M ⊗A (N ⊗A P ) , (m⊗A n)⊗A p 7→ m⊗A (n⊗A p) ,
lM : A⊗A M →M, a⊗A m 7→ a ·m, and rM : M ⊗A A→M, m⊗A a 7→ m · a,
were “the identities”, that is, as if AModA was a strict monoidal category.

An A-ring is a monoid in (AModA,⊗A, A). Equivalently, it is a k-algebra R together with
a morphism of k-algebras φ : A→ R. In what follows we will often write that (R, φ) is an
A-ring when we need to stress the role played by φ. A morphism of A-rings from (R, φ) to
(S, ψ) is a k-algebra morphism ϕ : R → S such that ϕ ◦ φ = ψ. The category of A-rings
and their morphisms will be denoted by RingA.

1.2. Lie-Rinehart algebras. A Lie-Rinehart algebra over a commutative k-algebra A
(called in this way in honour of Rinehart, who studied them in [18] under the name
of (K,R)-Lie algebras) is a Lie algebra L endowed with a (left) A-module structure
A⊗ L→ L, a⊗X 7→ a ·X, and with a Lie algebra morphism ω : L→ Derk (A) such that

ω (a ·X) = a · ω (X) and [X, a · Y ] = a · [X, Y ] + ω (X) (a) · Y (1)
for all a ∈ A and X, Y ∈ L. A morphism of Lie-Rinehart algebras over A from (L, ω) to
(L′, ω′) is a Lie algebra morphism f : L → L′ which is also left A-linear and such that
ω′ ◦ f = ω. With these morphisms, Lie-Rinehart algebras over A form a category that
we denote by LieRinA. For the sake of brevity, we may simply write that (A,L, ω) is a
Lie-Rinehart algebra to mean that (L, ω) is a Lie-Rinehart algebra over A. When A and ω
are clear from the context, we may simply write L instead of (A,L, ω). For instance, we
may often write that f : L→ L′ is a morphism of Lie-Rinehart algebras over A to mean
that f is a morphism in LieRinA as above.

Example 1.1. The smooth global sections of a Lie algebroid over a real smooth manifold
M naturally form a Lie-Rinehart algebra over C(M) (see e.g. [14, page 101], where Lie-
Rinehart algebras are called Lie pseudoalgebras). In particular, the smooth vector fields on
M give rise to the Lie-Rinehart algebra

(
DerR(C(M)), Id

)
.

Given a Lie-Rinehart algebra (A,L, ω), a universal enveloping algebra of L is an A-ring(
UA(L), ιA

)
together with a morphism of Lie algebras ιL : L→ UA(L) such that

ιL(a ·X) = ιA(a)ιL(X) and
[
ιL(X), ιA(a)

]
= ιA

(
ω(X)(a)

)
(2)

for all a ∈ A, X ∈ L, and which is universal with respect to this property. That is to say,
for any A-ring (R, φA) together with a Lie algebra morphism φL : L→ R such that

φL(a ·X) = φA(a)φL(X) and
[
φL(X), φA(a)

]
= φA

(
ω(X)(a)

)
(3)

for all a ∈ A, X ∈ L, there exists a unique morphism of A-rings Φ : UA(L)→ R such that
Φ ◦ ιL = φL. It follows that the universal enveloping algebra construction induces a functor
UA : LieRinA → RingA.
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1.3. Anchored Lie algebras. Recall from [19, §2.1] that an anchored Lie algebra over a
non-commutative k-algebra A (also called A-anchored Lie algebra) is a Lie algebra L over
k together with a Lie algebra morphism ω : L→ Derk(A), called the anchor. A morphism
of A-anchored Lie algebras from (L, ω) to (L′, ω′) is a Lie algebra morphism f : L → L′

such that ω′ ◦ f = ω. The category of A-anchored Lie algebras and their morphisms will
be denoted by AnchLieA. As a matter of notation, we may write (A,L, ω) to mean the
A-anchored Lie algebra (L, ω). Again, if A and ω are clear from the context, we may simply
write L instead of (A,L, ω).
Example 1.2. The associated Lie algebra of a k-algebra A becomes an A-anchored Lie
algebra with anchor $A : A→ Derk(A), a 7→ [a,−].

Given an A-anchored Lie algebra (L, ω), we have a construction for a universal enveloping
algebra of L. This is the Ae-ring A � U(L) � A obtained by the Connes-Moscovici’s
bialgebroid construction in [19, §2.2]. Explicitly, it is the k-algebra with underlying vector
space A⊗ U(L)⊗ A, unit 1A ⊗ 1U ⊗ 1A, multiplication uniquely determined by

(a⊗ u⊗ b)(a′ ⊗ v ⊗ b′) =
∑

a(u1 · a′)⊗ u2v ⊗ (u3 · b′)b
and Ae-ring structure given by JA : Ae → A�U(L)�A, a⊗ bo 7→ a⊗ 1U ⊗ b. It comes with
a morphism of Lie algebras JL : L→ A� U(L)� A,X 7→ 1A ⊗X ⊗ 1A, such that[

JL(X), JA(a⊗ bo)
]

= JA
(
ω(X)(a)⊗ bo + a⊗ ω(X)(b)o

)
for all a, b ∈ A, X ∈ L, and which is universal with respect to this property. That is to say,
for any Ae-ring (R, φA) together with a Lie algebra morphism φL : L→ R such that[

φL(X), φA(a⊗ bo)
]

= φA
(
ω(X)(a)⊗ bo + a⊗ ω(X)(b)o

)
for all a, b ∈ A, X ∈ L, there exists a unique morphism of Ae-rings Φ : A� U(L)� A→ R
such that Φ ◦ JL = φL. It follows that this construction induces a functor

AnchLieA → RingAe , (L, ω) 7→
(
A� U(L)� A, JA

)
. (4)

One of our main aims is to show that the universal property characterizing A� U(L)� A
is expressing the fact that the functor (4) is a left adjoint functor. As a consequence, we
will refer to A� U(L)� A as the universal enveloping Ae-ring of (A,L, ω).

The following results clarify the relationship between A-anchored Lie algebras and
Ae-anchored Lie algebras that will be needed in the sequel.
Lemma 1.3. Any δ ∈ Derk (A) induces a derivation δ⊗ ∈ Derk (Ae) uniquely determined by
δ⊗
(
a⊗ bo

)
= δ(a)⊗ bo + a⊗ δ(b)o for all a, b ∈ A. This induces a Lie algebra morphism

e : Derk (A)→ Derk (Ae) , δ 7→ δ⊗.
Proof. Straightforward. �

Proposition 1.4. Any A-anchored Lie algebra (L, ω) is an Ae-anchored Lie algebra via
ω⊗ : L→ Derk (Ae) , X 7→ ω(X)⊗.

The assignment (L, ω) 7→ (L, ω⊗) provides a functor EA : AnchLieA → AnchLieAe.
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Proof. In view of Lemma 1.3, the composition L
ω−→ Derk (A) e−→ Derk (Ae) mapping X to

ω(X)⊗ is a Lie algebra map. Thus, the assignment (L, ω) 7→ (L, ω⊗) is well-defined and it
is clearly functorial (it acts as the identity on morphisms). �

The functor EA of Proposition 1.4 naturally admits a left adjoint functor. In order to
introduce it, we take advantage of the construction of the product in the category AnchLieA.

Proposition 1.5. Let (L, ω) and (L′, ω′) be A-anchored Lie algebras. The product of (L, ω)
and (L′, ω′) in AnchLieA exists and can be computed as the pullback of vector spaces

L ×
Derk(A)

L′
q1 //

q2 ��

y
L

ω

��
L′

ω′
// Derk (A) ,

(5)

with component-wise bracket and anchor ω× := ω ◦ q1 = ω′ ◦ q2.

Proof. Since the pullback in vector spaces of a diagram of Lie algebras is naturally a Lie
algebra with component-wise bracket, L×Derk(A) L

′ is a Lie algebra and q1, q2 are Lie algebra
maps. The fact that the A-anchored Lie algebra

(
L×Derk(A) L

′, ω×
)

satisfies the universal
property of the product is an easy check that we leave to the interested reader. �

Let (M,$) be an Ae-anchored Lie algebra. By Lemma 1.3,
(
Derk (A) , e

)
is an Ae-anchored

Lie algebra as well and we can consider their product in AnchLieAe :

FA(M,$) q1 //

q2
��

y
M
$

��
Derk (A)

e
// Derk (Ae)

with component-wise bracket and anchor e ◦ q2 = $ ◦ q1. Concretely,

FA(M,$) =
{

(X, δ)∈M ×Derk(A)
∣∣∣$(X)(a⊗ bo) = δ(a)⊗ bo +a⊗ δ(b)o,∀a, b ∈ A

}
.

Theorem 1.6. For every Ae-anchored Lie algebra (M,$), the k-vector space FA(M,$) is
an A-anchored Lie algebra with component-wise bracket and anchor q2. The assignment
(M,$) 7→

(
FA(M,$), q2

)
induces a functor FA : AnchLieAe → AnchLieA which is right

adjoint to the functor EA : AnchLieA → AnchLieAe.

Proof. We already know that FA(M,$) is a Lie algebra and that q2 is a morphism of Lie
algebras. Moreover, the assignment (M,$) 7→

(
FA(M,$), q2

)
is functorial.

To show that FA is right adjoint to EA : AnchLieA → AnchLieAe , notice that L itself with
q1 = Id and q2 = ω is a pullback of the pair (e, ω⊗). Therefore, the identity morphism of L
plays the role of the component of the unit at L and it is a universal arrow from L to FA.
In view of [13, IV.1, Theorem 2(i)], the pair EA,FA forms an adjoint pair of functors. �
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Summing up, for every k-algebra A we have an adjunction

AnchLieAe

FA
��

AnchLieA.
EA

EE
(6)

2. The universal enveloping Ae-ring as a left adjoint functor

Let A,R be k-algebras and let (M,$) be an R-anchored Lie algebra. Assume that a
morphism of k-algebras φ : A→ R has been given. In this way, R becomes an A-ring and
we can consider the k-vector space

Derk(A,R) =
{
f ∈ Homk (A,R)

∣∣∣ f(ab) = f(a)φ(b) + φ(a)f(b) for all a, b ∈ A
}
.

Define AR
A(M,$) to be the pullback

AR
A(M,$)

y

p1 //

p2

��

M
$
��

Derk(R)
φ∗��

Derk(A)
φ∗

// Derk(A,R)

(7)

computed in the category of k-vector spaces. Concretely,

AR

A(M,$) =
{

(X, δ) ∈M × Derk(A)
∣∣∣ $(X)

(
φ(a)

)
= φ

(
δ(a)

)
for all a ∈ A

}
. (8)

Lemma 2.1. Let (R, φ) be an A-ring and (M,$) be an R-anchored Lie algebra. Then the k-
vector space AR

A(M,$) is an A-anchored Lie algebra with anchor p2 : AR
A(M,$)→ Derk(A)

and with component-wise bracket. Furthermore, p1 is a Lie algebra morphism.

Proof. Let (X, δ), (X ′, δ′) ∈ AR
A(M,$). By using (8) one checks that

$
(
[X,X ′]

)(
φ(a)

)
= φ

(
[δ, δ′](a)

)
for all a ∈ A. Therefore

(
[X,X ′], [δ, δ′]

)
∈ AR

A(M,$), which shows that AR
A(M,$) is a Lie

algebra. Clearly, p2 is a morphism of Lie algebras with respect to this structure and hence
AR
A(M,$) is an A-anchored Lie algebra, as claimed. �

Proposition 2.2. For any A-ring (R, φ), the assignment (M,$) 7→ AR
A(M,$) induces a

functor AR
A : AnchLieR → AnchLieA.

Proof. We already know how AR
A acts on objects. To see how it acts on morphism, notice

that it f : (M,$)→ (M ′, $′) is a morphism of R-anchored Lie algebras then the external
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hexagon in the following diagram

AR
A

(
M,$

)
AR

A(f) ''

p1 //

p2

$$

M
f

''
AR
A

(
M ′, $′

)
y

p′1

//

p′2

��

M ′

$′

��
Derk(R)

φ∗��
Derk(A)

φ∗

// Derk(A,R),

commutes by definition of AR
A(M,$). Thus, by the universal property of the pullback,

there exists a unique morphism of k-vector spaces AR
A(f) : AR

A

(
M,$

)
→ AR

A

(
M ′, $′

)
such

that p′2 ◦ AR
A(f) = p2 and p′1 ◦ AR

A(f) = f ◦ p1, which is explicitly given by

AR

A(f) :
(
X, δ

)
7→
(
f(X), δ

)
.

Since f is a morphism of Lie algebras, it follows that AR
A(f) is of Lie algebras as well. The

compatibility with the anchors is clear, whence AR
A(f) is of A-anchored Lie algebras. Since

on arrows AR
A is defined in terms of a universal property, it is functorial. �

Corollary 2.3. Let (R, φ) be an A-ring and denote by $R : R→ Derk(R) the structure of
R-anchored Lie algebra induced on R by the commutator bracket as in Example 1.2. The k-
vector space AR

A(R,$R) is an A-anchored Lie algebra with anchor p2 : AR
A(R,$R)→ Derk(A)

and with component-wise bracket.

It follows from Corollary 2.3 that to any A-ring R we may assign an A-anchored Lie
algebra

(
AR
A(R,$R), p2

)
.

Theorem 2.4. The assignment R 7→ AR
A(R,$R) induces a functor LA : RingA → AnchLieA.

Proof. We already know how LA acts on objects. To see how it acts on morphisms, notice
that it ϕ : (R, φ) → (S, ψ) is a morphism of A-rings then the right-most square and the
lowest triangle in the following diagram commute:

AR
A

(
R,$R

)
y

p1 //

p2

��

R
$R

��
ϕ

''Derk(R)
φ∗��

S
$S

��
Derk(A)

φ∗

//

ψ∗
11

Derk(A,R)
ϕ∗

((

Derk(S)
ψ∗��

Derk(A, S).
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Therefore, by the universal property of the pullback, there exists a unique morphism of
k-vector spaces LA(ϕ) : AR

A

(
R,$R

)
→ AS

A

(
S,$S

)
, which is explicitly given by

LA(ϕ) : (r, δ) 7→
(
ϕ(r), δ

)
. (9)

Since ϕ is a k-algebra morphism satisfying ϕ ◦ φ = ψ, it follows that LA(ϕ) is a Lie algebra
morphism. The compatibility with the anchors is clear, whence LA(ϕ) is of A-anchored Lie
algebras. Since on arrows LA is defined in terms of a universal property, it is functorial and
so we have a well-defined functor LA : RingA → AnchLieA. �

Remark 2.5. Let ϕ : (R, φ)→ (S, ψ) be a morphism of A-rings, as in the proof of Theorem 2.4.
Set AS

R : AnchLieS → AnchLieR, AR
A : AnchLieR → AnchLieA and AS

A : AnchLieS → AnchLieA
for the functors induced by ϕ, φ and ψ respectively. The universal property of the pullback
gives a morphism of R-anchored Lie algebras ϕ̃ : (R,$R)→ AS

R(S,$S) induced by ϕ and
a morphism of A-anchored Lie algebras χ : AR

A

(
AS
R(S,$S)

)
→ AS

A(S,$S) induced by the
composition AR

A

(
AS
R(S,$S)

)
→ AS

R(S,$S)→ S. The interested reader may check that the
morphism LA(ϕ) coincides with the composition χ ◦ AR

A

(
ϕ̃
)
. However, we believe that the

elementary proof we gave of Theorem 2.4 is more straightforward.

Now assume that an A-anchored Lie algebra (L, ω) has been given. By the universal
property of U(L) there exists a unique k-algebra extension Ω : U(L)→ Endk(A) of ω which
makes of A a U(L)-module algebra with

X · a = ω(X)(a), X · 1A = 0 and u · a = Ω(u)(a) (10)
for all X ∈ L, u ∈ U(L) and a ∈ A (see [3, Example 6.1.13(3)], for instance). As a
consequence, we may consider the A-ring A # U(L) with underlying vector space A⊗U(L),
unit 1A ⊗ 1U , multiplication uniquely determined by

(a⊗ u)(b⊗ v) =
∑

a(u1 · b)⊗ u2v (11)
for all a, b ∈ A, u, v ∈ U(L), and A-ring structure jA : A→ A # U(L), a 7→ a⊗ 1U .

Theorem 2.6. The assignment (L, ω) 7→ A # U(L) induces a functor UA : AnchLieA →
RingA which is left adjoint to LA : RingA → AnchLieA.

Proof. Let (L, ω) be an A-anchored Lie algebra and set UA(L) := A # U(L). Consider the
assignment jL : L→ UA(L), X 7→ 1A ⊗X. In view of (10) and of (11), jL is a morphism of
Lie algebras and[

jL(X), jA(a)
]

=
[
1A ⊗X, a⊗ 1U

]
= ω(X)(a)⊗ 1U = jA

(
ω(X)(a)

)
in UA(L), for all X ∈ L and a ∈ A. Therefore, jL and ω induce a k-linear morphism

ηL : L→ LA
(
UA(L)

)
, X 7→

(
jL(X), ω(X)

)
, (12)

via the universal property of the pullback. It is easy to check that ηL is of Lie algebras and
that it is compatible with the anchors, thus it is a morphism of A-anchored Lie algebras.
We claim that ηL is a universal map from L to LA in the sense of [13, III.1, Definition].
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Assume then that (R, φ) is a A-ring and that f : L→ LA(R) is a morphism of A-anchored
Lie algebras. By definition of LA(R), f(X) =

(
f̃(X), ω(X)

)
and[

f̃(X), φ(a)
]

= $R

(
f̃(X)

)(
φ(a)

)
(8)= φ

(
ω(X)(a)

)
(13)

for all X ∈ L and a ∈ A, where f̃ := p1 ◦ f . As in the proof of [19, Theorem 2.9], a
straightforward check using (13) and induction on a PBW basis of U(L) shows that

F : A # U(L)→ R, a⊗ u 7→ φ(a)U
(
f̃
)
(u),

is a morphism of A-rings which satisfies F
(
jL(X)

)
= f̃(X) for all X ∈ L. Moreover,

LA(F )
(
ηL(X)

)
(12)= LA(F )

(
jL(X), ω(X)

)
(9)=
(
F
(
jL(X)

)
, ω(X)

)
=
(
f̃(X), ω(X)

)
= f(X)

for all X ∈ L and F is the unique A-ring map satisfying the latter relation. Therefore,
UA,LA form an adjoint pair by [13, IV.1, Theorem 2(i)]. �

Notice that Theorem 2.6 is expressing the fact that
(
A # U(L), jA

)
is the universal

enveloping A-ring of (A,L, ω). In [11, page 175], the algebra A # U(L) is called the algebra
of differential operators of the representation ω of L (our construction differs slightly from
the one in [11], because of the different choice of sides for the modules). Theorem 2.6
provides then a conceptual explanation for the universal property of A # U(L) described
in [11, V.6, Proposition 2] and a new proof of the latter.
Remark 2.7. For the sake of future reference, if f : (L, ω) → (L′, ω′) is a morphism of
A-anchored Lie algebras, then the induced morphism of A-rings UA(f) : UA(L)→ UA(L′) is
explicitly given by UA(f)(a⊗ u) = a⊗ U(f)(u) for all a ∈ A and u ∈ U(L).

As a particular case of Theorem 2.6, we have an adjunction
RingAe

LAe

��
AnchLieAe .

UAe

FF

If we compose it with the adjunction (6), we obtain a new adjunction
RingAe

LA��
AnchLieA.

UA

FF
(14)

where UA := UAe ◦ EA and LA := FA ◦ LAe . Notice that UA(L) = Ae # U(L), where the
U(L)-module structure on Ae is that of a tensor product of U(L)-modules.
Theorem 2.8. There is an isomorphism of Ae-rings

Ae # U(L)→ A� U(L)� A, (a⊗ bo)⊗ u 7→ a⊗ u⊗ b. (15)
In particular, (14) exhibits the Connes-Moscovici’s bialgebroid construction of [19, §2] as a
left adjoint functor.
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Proof. A straightforward computation by means of the cocommutativity of U(L) shows
that (15) is, in fact, a morphism of Ae-rings, where the U(L)-module structure on Ae is
given by the diagonal action u · (a⊗ bo) = ∑(u1 · a)⊗ (u2 · b)o for all u ∈ U(L), a, b ∈ A. �

The universal property of [19, Theorem 2.9] (see §1.3) expresses exactly the fact that for
any morphism of A-anchored Lie algebras L→ LA(R), there exists a unique morphism of
Ae-rings A� U(L)� A→ R extending it, as the following proposition states.

Proposition 2.9. For any Ae-ring (R, φA), the A-anchored Lie algebra LA(R) can be
realized as the following pullback of k-vector spaces

LA(R)
y

ρ1 //

ρ2

��

R
$R

��
Derk(R)

φA
∗

��
Derk(A)

e
// Derk (Ae)

φA∗

// Derk(Ae, R)

with component-wise bracket and anchor ρ2. Concretely,

LA(R) =
{

(r, δ) ∈ R× Derk (A)
∣∣∣ [r, φA(a⊗ bo)

]
= φA

(
δ(a)⊗ bo + a⊗ δ(b)o

)
,∀a, b ∈ A

}
.

The datum of a morphism of A-anchored Lie algebras L→ LA(R) is therefore equivalent to
the datum of a morphism of Lie algebras φL : L→ R such that for all X ∈ L, a, b ∈ A,[

φL(X), φA(a⊗ bo)
]

= φA
(
X · (a⊗ bo)

)
.

Proof. The first claim follows from the pasting law for pullbacks. The second claim is a
straightforward check. �

If we define an (A,L, ω)-module to be an A-bimodule together with a Lie algebra
morphism ρ : L→ Endk(M) such that

ρ(X)(a ·m · b) = ω(X)(a) ·m · b+ a · ρ(X)(m) · b+ a ·m · ω(X)(b) (16)
as in [19, Corollary 2.10], then we have the following expected result.

Proposition 2.10. For an A-bimodule M , the datum of a left (A,L, ω)-module structure
is equivalent to the datum of a morphism L→ LA

(
Endk(M)

)
of A-anchored Lie algebras.

Proof. Recall that if M is an A-bimodule, then Endk(M) has a natural Ae-ring structure
induced by left and right multiplication by A:

φ : Ae → Endk(M), a⊗ bo 7→ la ◦ rb,
where la(m) := a · m and ra(m) := m · a for all a ∈ A, m ∈ M . By the universal
property of the pullback, giving a morphism % : L → LA

(
Endk(M)

)
of A-anchored Lie

algebras is equivalent to giving a morphism of Lie algebras ρ : L → Endk(M) such that
φ∗ ◦$Endk(M) ◦ ρ = φ∗ ◦ e ◦ ω, which is exactly (16). �
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As a consequence, Theorem 2.8 and Proposition 2.10 provide a conceptual proof of the
equivalence between the category of (A,L, ω)-modules and the category of UA(L)-modules
already observed in [19, Corollary 2.10].

3. The universal enveloping A-ring as a left adjoint functor

Henceforth, A is a commutative k-algebra. Notice that if a morphism of k-algebras
φ : A → R has been given, then Derk(A,R) becomes a left A-module with A-action
(a · f)(b) := φ(a)f(b) for all a, b ∈ A, f ∈ Derk(A,R).

Proposition 3.1. Let (R, φ) be an A-ring. The k-vector space AR
A(R,$R) of (8) is a Lie-

Rinehart algebra over A with anchor p2 : AR
A(R,$R)→ Derk(A) and with component-wise

bracket and left A-action. Furthermore, p1 is a left A-linear and Lie algebra morphism.

Proof. We already know from Lemma 2.1 and Corollary 2.3 thatAR
A(R,$R) is an A-anchored

Lie algebra with component-wise bracket and anchor p2 and we know that p1 is a Lie algebra
morphism. We only need to check the A-module properties. Since, in this case, (7) is also
a diagram of left A-modules and left A-linear morphisms, AR

A(R,$R) is a left A-module
itself with component-wise A-action and p1, p2 are left A-linear. Moreover[

(r, δ), a · (r′, δ′)
]

=
[
(r, δ), (φ(a)r′, a · δ′)

]
=
(
rφ(a)r′ − φ(a)r′r,

[
δ, a · δ′

])
(8)=
(
φ(a)[r, r′] + φ

(
δ(a)

)
r′, a ·

[
δ, δ′

]
+ δ(a) · δ′

)
= a ·

(
[r, r′], [δ, δ′]

)
+ δ(a) ·

(
r′, δ′

)
= a ·

[
(r, δ), (r′, δ′)

]
+ p2

(
(r, δ)

)
(a) · (r′, δ′)

for all a ∈ A, r, r′ ∈ R, δ, δ′ ∈ Derk (A), which entails that the Leibniz rule (1) is satisfied
and hence that AR

A(R,$R) is a Lie-Rinehart algebra over A. �

Theorem 3.2. The assignment R 7→ AR
A(R,$R) induces a functor LA : RingA → LieRinA.

Proof. It follows from Theorem 2.4 and Proposition 3.1. �

Concretely, LA(R) =
{

(r, δ) ∈ R× Derk (A)
∣∣∣ [r, φA(a)

]
= φA

(
δ(a)

)
for all a ∈ A

}
.

The following proposition, analogue of Proposition 2.9, argues in favour of the fact that
LA provides a right adjoint for the functor UA : LieRinA → RingA of §1.2.

Proposition 3.3. Let (R, φA) be an A-ring and let (L, ω) be a Lie-Rinehart algebra over
A. Then the datum of a morphism ψL : L → LA(R) of Lie-Rinehart algebras over A is
equivalent to the datum of a morphism of Lie algebras φL : L→ R such that (3) hold.

Proof. By the universal property of the pullback, the existence of a morphism of A-modules
and of Lie algebras ψL : L→ LA(R) such that p2 ◦ψL = ω is equivalent to the existence of a
morphism of A-modules and of Lie algebras φL : L→ R such that φA∗ ◦$R ◦ φL = φA∗ ◦ ω,
which is exactly (3). �
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Theorem 3.4. The functor LA : RingA → LieRinA is right adjoint to the universal enveloping
algebra functor UA : LieRinA → RingA.

Proof. Let (A,L, ω) be a Lie-Rinehart algebra and consider the assignment

ηL : L→ LA
(
UA(L)

)
, X 7→

(
ιL(X), ω(X)

)
, (17)

induced by ιL and ω via the universal property of the pullback in view of (2). It is easy to
check that ηL is a morphism of Lie-Rinehart algebras over A. Moreover, if f : (L, ω) →
(L′, ω′) is a morphism of Lie-Rinehart algebras over A and if F : LA

(
UA(L)

)
→ LA

(
UA(L′)

)
denotes the morphism induced by UA(f), then the fact that

F
(
ηL(X)

)
(17)= F

(
ιL(X), ω(X)

)
(9)=
(
UA(f)

(
ιL(X)

)
, ω(X)

)
=
(
ιL′
(
f(X)

)
, ω′
(
f(X)

))
for all X ∈ L entails that F ◦ ηL = ηL′ ◦ f and so the collection {ηL | L ∈ LieRinA} defines a
natural transformation η : Id→ LA ◦ UA.

In view of Proposition 3.3 and the universal property of UA(L), for any A-ring (R, φA)
and any morphism ψL : L→ LA(R) of Lie-Rinehart algebras over A, there exists a unique
morphism of A-rings Φ : UA(L)→ R such that Φ ◦ ιL = p1 ◦ ψL. By a direct check

LA(Φ)
(
ηL(X)

)
(17)= LA(Φ)

(
ιL(X), ω(X)

)
(9)=
(

Φ
(
ιL(X)

)
, ω(X)

)
= ψL(X)

for all X ∈ L and Φ is the unique morphism of A-rings satisfying LA(Φ)◦ηL = ψL. It follows
that ηL is a universal map from L to LA in the sense of [13, III.1, Definition], for every
(L, ω) ∈ LieRinA, and hence UA,LA form an adjoint pair by [13, IV.1, Theorem 2(i)]. �

4. On morphisms, modules and the infinitesimal gauge algebra

We conclude with a few remarks concerning morphisms between Lie-Rinehart algebras
over different bases, modules over Lie-Rinehart algebras and the infinitesimal gauge algebra
DO(A,L,M) of an A-module M with respect to (A,L, ω) described in [10, page 72].

4.1. Morphisms over different bases. By mimicking the arguments used to prove
Lemma 2.1 and Proposition 3.1, one shows that the following result holds.

Proposition 4.1. If (L′, ω′) is a Lie-Rinehart algebra over a commutative k-algebra A′ and
φ : A → A′ is a morphism of commutative k-algebras, then AA′

A (L′, ω′) is a Lie-Rinehart
algebra over A.

Proposition 4.1 suggests the following definition.

Definition 4.2. A morphism of Lie-Rinehart algebras from (A,L, ω) to (A′, L′, ω′) is a pair
(φ,Φ) where φ : A→ A′ is a morphism of commutative k-algebras and Φ : L→ AA′

A (L′, ω′)
is a morphism of Lie-Rinehart algebras over A.

Remark 4.3. If A = A′ and φ = Id, then L′ itself with p1 = Id and p2 = ω′ is a pullback of
Derk (A) = Derk (A) ω′←− L′. Therefore, a morphism (Id,Φ) of Lie-Rinehart algebras from
(A,L, ω) to (A,L′, ω′) is the same as a morphism of Lie-Rinehart algebras over A as in §1.2.
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Recall that in [10, page 61] a morphism of Lie-Rinehart algebras from (A,L, ω) to
(A′, L′, ω′) is defined as a pair (φ, ψ) where φ : A → A′ is a morphism of k-algebras and
ψ : L → L′ is a morphism of Lie algebras and of left A-modules such that for all a ∈ A,
X ∈ L,

φ
(
ω(X)(a)

)
= ω′

(
ψ(X)

)(
φ(a)

)
. (18)

Proposition 4.4. The datum of a morphism of Lie-Rinehart algebras as in Definition 4.2
is equivalent to the datum of a morphism in the sense of [10, page 61].
Proof. By the universal property of the pullback, giving a morphism Ψ : L→ AA′

A (L′, ω′) of
Lie-Rinehart algebras over A is equivalent to giving a morphism of Lie algebras and of left
A-modules ψ : L→ L′ such that φ∗ ◦ ω′ ◦ ψ = φ∗ ◦ ω, which is exactly (18). �

4.2. Modules over Lie-Rinehart algebras. Recall that an (A,L, ω)-module in the
sense of [10, page 62] is a left A-module M together with a morphism of Lie algebras
ρ : L→ Endk(M) such that

ρ(a ·X)(m) = a · ρ(X)(m) and ρ(X)(a ·m) = a · ρ(X)(m) + ω(X)(a) ·m
for all X ∈ L, m ∈M , a ∈ A.
Proposition 4.5. For a left A-module M , the datum of a left (A,L, ω)-module structure as
in [10, page 62] is equivalent to the datum of a morphism L→ LA

(
Endk(M)

)
of Lie-Rinehart

algebras over A.
Proof. Completely analogous to the proof of Proposition 2.10 and Proposition 4.4. �

As a consequence, Theorem 3.4 and Proposition 4.5 provide a conceptual proof of the
well-known equivalence between the category of (A,L, ω)-modules and the category of
UA(L)-modules (see [10, page 65]).
4.3. The infinitesimal gauge algebra of a module. Let (L, ω) be a Lie-Rinehart
algebra over A and let M be an A-module. In [10, page 72], a Lie-Rinehart algebra
DO(A,L,M) is introduced, which acts on M by the analogue of infinitesimal gauge
transformations. We show how DO(A,L,M) can naturally be obtained via the constructions
we performed and, as a consequence, how it naturally inherits a universal property as well.

The following is the analogue of Proposition 1.5 for Lie-Rinehart algebras.
Proposition 4.6. Let (L, ω) and (L′, ω′) be Lie-rinehart algebras over A. The product of
(L, ω) and (L′, ω′) in LieRinA exists and can be computed as the pullback (5) with component-
wise bracket and A-action and with anchor ω× := ω ◦ q1 = ω′ ◦ q2.
Proof. We already know that, with the structures of the statement, L ×Derk(A) L

′ is an
A-anchored Lie algebra and it is clearly a left A-module via the component-wise A-action.
The anchor ω×, being the composition of A-linear maps, is A-linear. We are left to check
the Leibniz condition (1). Since for every a ∈ A and (X, Y ) ∈ L ×Derk(A) L

′ we have
ω(X)(a) = ω′(Y )(a) = ω×(X, Y )(a), the following direct computation concludes the proof:[

(X, Y ), a · (X ′, Y ′)
]

=
(
[X, a ·X ′], [Y, a · Y ′]

)
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(1)=
(
a · [X,X ′] + ω(X)(a) ·X ′, a · [Y, Y ′] + ω′(Y )(a) · Y ′

)
= a ·

[
(X, Y ), (X ′, Y ′)

]
+ ω×(X, Y )(a) · (X ′, Y ′). �

Let (A,L, ω) be a Lie-Rinehart algebra. Recall from [10, page 72] that for a given A-module
M , the Lie-Rinehart algebra DO(A,L,M) of infinitesimal gauge transformations of M with
respect to L is the subspace of Endk(M)× L composed by the elements (f,X) such that

f(a ·m) = ω(X)(a) ·m+ a · f(m)
for all a ∈ A, m ∈M . The bracket and the A-action are given component-wise, while the
anchor ω̃ is induced by the restriction of the projection on the second factor.
Proposition 4.7. Let M be an A-module and let (A,L, ω) be a Lie-Rinehart algebra. The
Lie-Rinehart algebra

(
A,DO(A,L,M), ω̃

)
is the product in LieRinA of the Lie-Rinehart

algebras (A,L, ω) and LA
(
Endk(M)

)
.

Proof. Set E := Endk(M) and φ : A → E, a 7→ la. By definition of LA(E) and by the
construction of the product in LieRinA, (A,L, ω)×LA(E) is the following pasting of pullbacks:

LA(E) ×
Derk(A)

L
y

q1 //

q2

��

LA(E)
y

p2

��

p1 // E
$E

��
Derk (E)

φ∗��
L

ω
// Derk (A)

φ∗

// Derk (A,E) .

Concretely, LA(E) ×
Derk(A)

L =
{

(f,X) ∈ E × L | [f, la] = lω(X)(a) for all a ∈ A
}

with
component-wise bracket and A-action and with anchor given by p2 ◦ q1 = ω ◦ q2 = ω̃. �

It follows from Proposition 4.5 that M is an
(
A,DO(A,L,M), ω̃

)
-module via q1. Namely,

% := (p1 ◦ q1) : DO(A,L,M) → Endk(M) satisfies the conditions of §4.2. Furthermore,
DO(A,L,M) admits a canonical Lie-Rinehart algebra morphism q2 : DO(A,L,M) → L

and, in fact,
(
A,DO(A,L,M), ω̃

)
is universal with respect to these properties.

Theorem 4.8. Let M be an A-module and let (A,L, ω) be a Lie-Rinehart algebra. For
every Lie-Rinehart algebra (A,L′, ω′) acting on M via ρ : L′ → Endk(M) and any morphism
of Lie-Rinehart algebras f : L′ → L, there exists a unique morphism f̃ : L′ → DO(A,L,M)
of Lie-Rinehart algebras over A such that % ◦ f̃ = ρ and q2 ◦ f̃ = f .
Proof. It follows from Proposition 4.5 and Proposition 4.7. �

Example 4.9. Among all infinitesimal gauge algebras DO(A,L,M) associated with an
A-module M , there exists a universal one, which is the Atiyah algebra AM of M (see e.g. [12,
(1.1.3) Examples (c)]). This is the Lie-Rinehart algebra LA(Endk(M)) of infinitesimal gauge
transformations of M with respect to Derk (A). Concretely,

AM =
{

(f, δ) ∈ Endk(M)× Derk (A)
∣∣∣ f(a ·m) = a · f(m) + δ(a) ·m

}
.
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By Theorem 4.8, if (A,L, ω) is a Lie-Rinehart algebra acting on M via ρ : L→ Endk(M),
then there exists a unique morphism τL : L → AM of Lie-Rinehart algebras over A such
that p1 ◦ τL = ρ. In particular, the datum of a left (A,L, ω)-module structure on M is
equivalent to the datum of a morphism L→ AM of Lie-Rinehart algebras over A (see [12,
(1.1.4) Definition] and Proposition 4.5).
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