

Smash and crossed product decompositions of universal enveloping algebras and Lie-Rinehart algebra connections

Paolo Saracco

ULB - Université Libre de Bruxelles

Fonds de la Recherche Scientifique - FNRS

Hopf algebras, monoidal categories and related topics

Bucharest, July 27, 2022

(based on a joint work with X. Bekaert and N. Kowalzig)

The Setting, the Known, and the Question

• Let $\pi: P \to M$ be a principal *H*-bundle.

The associated short exact sequence of vector bundles

$$0 \rightarrow VP \rightarrow TP \rightarrow \pi^*TM \rightarrow 0$$

induces a short exact sequence of Lie algebroids

(†)
$$0 \rightarrow \frac{VP}{H} \rightarrow \frac{TP}{H} \rightarrow TM \rightarrow 0$$

over M, called the Atiyah sequence of the principal bundle.

An Ehresmann connection is a chosen splitting of (†) as sequence of vector bundles.

Question

- How does the existence of connections reflect on the associated algebra of differential operators D^H(P)?
- Can we characterize connections on Lie algebroids in terms of their universal enveloping algebras?

Sources of inspiration

(A) The universal enveloping algebra of a semi-direct sum $\mathfrak{g} = \mathfrak{n} \ni \mathfrak{h}$ is isomorphic to the smash product of $U(\mathfrak{n})$ and $U(\mathfrak{h})$,

 $U(\mathfrak{g})\simeq U(\mathfrak{n}) \# U(\mathfrak{h}),$

as associative algebras.

(B) The universal enveloping algebra of a Lie algebra extension

 $0 \to \mathfrak{n} \to \mathfrak{g} \to \mathfrak{h} \to 0$

is isomorphic to the crossed product of $U(\mathfrak{n})$ and $U(\mathfrak{h})$,

 $U(\mathfrak{g})\simeq U(\mathfrak{n})*U(\mathfrak{h}),$

as associative algebras.

(C) If $\mathfrak{n} \subseteq \mathfrak{g}$ is a Lie subalgebra, then $U(\mathfrak{g})$ is free over $U(\mathfrak{n})$. More precisely,

$$U(\mathfrak{g})\simeq U(\mathfrak{n})\otimes S(\mathfrak{h})$$

as a left $U(\mathfrak{n})$ -module.

Lie algebroids, Lie-Rinehart algebras ...

Definition

A Lie algebroid is a vector bundle $E \to M$ together with a Lie bracket on its space of sections $\Gamma(E)$ and a vector bundle morphism $\rho: E \to TM$ satisfying the Leibniz rule

$$[X, f \cdot Y] = f \cdot [X, Y] + \rho(X)(f) \cdot Y$$

for all $X, Y \in \Gamma(E)$, $f \in C^{\infty}(M)$.

Definition

A Lie-Rinehart algebra over the commutative algebra A is a Lie algebra \mathfrak{h} together with an A-module structure $A \to \operatorname{End}(\mathfrak{h})$ and a Lie algebra map $\omega \colon \mathfrak{h} \to \operatorname{Der}(A)$ such that ω is A-linear and the Leibniz rule

$$[X, f \cdot Y] = f \cdot [X, Y] + \omega(X)(f) \cdot Y$$

is satisfied for all $X, Y \in \mathfrak{h}$, $f \in A$.

Remark

The global sections $\Gamma(E)$ of a Lie algebroid E form a Lie-Rinehart algebra over $C^{\infty}(M)$, which is finitely generated and projective as $C^{\infty}(M)$ -module.

... and their universal enveloping algebras

Definition

The universal enveloping algebra of a Lie-Rinehart algebra $(A, \mathfrak{h}, \omega)$ is a \Bbbk -algebra $\mathcal{U}(\mathfrak{h})$ endowed with a morphism $\iota_A \colon A \to \mathcal{U}(\mathfrak{h})$ of \Bbbk -algebras and a morphism $\iota_{\mathfrak{h}} \colon \mathfrak{h} \to \mathcal{U}(\mathfrak{h})$ of Lie algebras such that

 $\iota_{\mathfrak{h}}(aX) = \iota_{\mathcal{A}}(a) \iota_{\mathfrak{h}}(X) \quad \text{and} \quad \iota_{\mathfrak{h}}(X) \iota_{\mathcal{A}}(a) - \iota_{\mathcal{A}}(a) \iota_{\mathfrak{h}}(X) = \iota_{\mathcal{A}}(\omega(X)(a))$

for all $a \in A$, $X \in \mathfrak{h}$, and which is universal with respect to this property.

Remark [S.]

There is a more compact version of this universal property in terms of a functor \mathcal{L}_A from A-rings to Lie-Rinehart algebras over A.

The universal enveloping algebra of a Lie algebroid is the universal enveloping algebra of the associated Lie-Rinehart algebra.

Example

The universal enveloping algebra of the Lie algebroid $TM \rightarrow M$ is the algebra of differential operators on M.

Rephrasing the question

Given a short exact sequence of Lie-Rinehart algebras

$$(\dagger) \qquad \qquad 0 \to \mathfrak{n} \to \mathfrak{g} \to \mathfrak{h} \to 0$$

which are finitely generated and projective as A-modules, an Ehresmann connection is a chosen splitting of (\dagger) as sequence of A-modules.

Question

Can we describe Ehresmann connections in terms of the involved universal enveloping algebras?

Definition

- A (left) Hopf algebroid is a pair (A, \mathcal{H}) of k-algebras such that
 - ▶ \mathcal{H} is an $A^{e} = A \otimes A^{\mathrm{op}}$ -ring via an algebra map $s \otimes t = \eta \colon A^{e} \to \mathcal{H}$;
 - ▶ $_{\eta}\mathcal{H}$ admits an *A*-coring structure $(\mathcal{H}, \Delta : \mathcal{H} \to \mathcal{H} \otimes_{A} \mathcal{H}, \varepsilon : \mathcal{H} \to A)$;
 - Δ is multiplicative, i.e. $\Delta(u)\Delta(v)$ makes sense and equals $\Delta(uv)$;
 - ε is a left character, i.e. $\varepsilon(u \, s \varepsilon(v)) = \varepsilon(u \, t \varepsilon(v));$
 - $\blacktriangleright \ \beta \colon \mathcal{H} \otimes_{\mathcal{A}^{\mathrm{op}}} \mathcal{H} \to \mathcal{H} \otimes_{\mathcal{A}} \mathcal{H}, \ u \otimes_{\mathcal{A}^{\mathrm{op}}} v \mapsto u_{(1)} \otimes_{\mathcal{A}} u_{(2)} v \text{ is bijective.}$

A Blattner-Cohen-Montgomery theorem

Theorem [Bekaert-Kowalzig-S.]

Let (U, A) and (V, A) be left Hopf algebroids. Let $U \xrightarrow{\pi} V$ be a surjective morphism of left Hopf algebroids with left Hopf kernel *B* and which also admits an *A*-coring section $\gamma: V \to U$.

Assume that U_{\triangleleft} is projective as an A-module and that

$$\gamma(1_V) = 1_U, \quad \gamma(a \triangleright v) = a \triangleright \gamma(v), \quad \gamma(v \blacktriangleleft a) = \gamma(v) \blacktriangleleft a.$$

Then there exists a Hopf 2-cocycle $\sigma: U \otimes_{A^{op}} U \to B$ and an isomorphism of A^{e} -rings and of right V-comodule algebras

 $\Phi \colon B \#_{\sigma} V \to U, \quad b \# v \mapsto b \gamma(v).$

Applications ...

Given a L-R algebra $(A, \mathfrak{g}, \omega)$, $\mathcal{U}(\mathfrak{g})$ is a Hopf algebroid.

 $\label{eq:constraint} \begin{array}{l} \textbf{Theorem} \ [\text{Bekaert-Kowalzig-S.}] \\ \text{If } 0 \to \mathfrak{n} \to \mathfrak{g} \to \mathfrak{h} \to 0 \ \text{is a ses of projective L-R algebras, then} \end{array}$

 $\mathcal{U}(\mathfrak{g}) \simeq U(\mathfrak{n}) \#_{\sigma} \mathcal{U}(\mathfrak{h}),$

as A-rings and right $\mathcal{U}(\mathfrak{h})$ -comodule algebras. In particular,

▶ If $\mathfrak{g} \simeq \mathfrak{n} \ni \mathfrak{h}$ is a semi-direct sum, then

 $\mathcal{U}(\mathfrak{n} \ni \mathfrak{h}) \simeq \mathcal{U}(\mathfrak{n}) \# \mathcal{U}(\mathfrak{h}).$

• If $\mathfrak{g} \simeq \mathfrak{n} \ni_{\tau} \mathfrak{h}$ is a curved semi-direct sum, then

 $\mathcal{U}(\mathfrak{n} \ni_{\tau} \mathfrak{h}) \simeq U(\mathfrak{n}) \#_{\sigma} \mathcal{U}(\mathfrak{h}).$

Key: The construction of a symmetrization map $\mathcal{S}(\mathfrak{g}) \rightarrow \mathcal{U}(\mathfrak{g})$.

... and related results

Theorem [Bekaert-Kowalzig-S.]

Let $\mathfrak{h}\subseteq\mathfrak{g}$ be an inclusion of Lie-Rinehart algebras which are projective as left A-modules.

Suppose that the quotient A-module $\mathfrak{g}/\mathfrak{h}$ is projective, too.

Then we have an isomorphism

 $\mathcal{U}(\mathfrak{g})\simeq\mathcal{U}(\mathfrak{h})\otimes_{\mathcal{A}}\mathcal{S}(\mathfrak{g}/\mathfrak{h})$

as left $\mathcal{U}(\mathfrak{h})$ -modules. In particular, $\mathcal{U}(\mathfrak{g})$ is projective over $\mathcal{U}(\mathfrak{h})$.

Back to the geometric example

Example [Bekaert-Kowalzig-S.]

Consider a principal *H*-bundle of total space P and base *M*. Recall that an Ehresmann connection on P is equivalent to a splitting of the Atiyah sequence

$$0
ightarrow rac{VP}{H}
ightarrow rac{TP}{H}
ightarrow TM
ightarrow 0.$$

Up to a technical condition, Ehresmann connections on ${\cal P}$ correspond bijectively to factorisations

 $\mathcal{D}^{H}(P) \cong \mathcal{V}^{H}(P) \#_{\sigma} \mathcal{D}(M)$

of the algebra generated by the invariant vector fields on P. Here, $\mathcal{V}^H(P)$ and $\mathcal{D}(M)$ are generated by invariant vector fields tangentials to the fibres and by differential operators on the base, respectively.

The end

Thank you

