
GEOMETRIC PARTIAL COMODULES OVER FLAT COALGEBRAS IN
ABELIAN CATEGORIES ARE GLOBALIZABLE
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Abstract. The aim of this paper is to prove the statement in the title. As a by-product,
we obtain new globalization results in cases never considered before, such as partial
corepresentations of Hopf algebras. Moreover, we show that for partial representations
of groups and Hopf algebras, our globalization coincides with those described earlier in
literature. Finally, we introduce Hopf partial comodules over a bialgebra as geometric partial
comodules in the monoidal category of (global) modules. By applying our globalization
theorem we obtain an analogue of the fundamental theorem for Hopf modules in this
partial setting.

1. Introduction

Originally introduced as a method to classify certain classes of C∗-algebras as generalized
crossed products [25], partial group actions quickly attracted the attention of the algebra
community and since the beginning of the century, they have been intensively studied
from a purely algebraic point of view, resulting in remarkable applications and theoretic
developments. Currently, partial actions and related structures are studied at various
levels of generality, including partial (co)actions of (weak or multiplier) Hopf algebras
[16, 17, 26], semigroups (e.g., recently, [31]), inductive constellations [27], groupoids, and,
more generally, categories [35]. For a more exhaustive summary and an idea of the impact
of partial (co)actions on contemporary Mathematics, we refer the reader to the recent
survey [20] and, in particular, to the references therein.

One of the main sources of examples of partial actions of groups is provided by the
restriction of the global action of a group G on a set X to arbitrary subsets of X. In fact, it
has been proved that any partial group action can be realized as the restriction of a certain
(minimal) global action, called its globalization or enveloping action. Globalizations proved
immediately to play an important role in the study of partial actions, for instance in the
development of Galois theory of partial group actions in [23] as well as in a series of other
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PS is a Chargé de Recherches of the Fonds de la Recherche Scientifique - FNRS and a member of the

National Group for Algebraic and Geometric Structures and their Applications (GNSAGA-INdAM). JV
thanks the FNRS (National Research Fund of the French speaking community in Belgium) for support via
the MIS project ‘Antipode’ (Grant F.4502.18).

This version of the article has been accepted for publication, after peer review. The final publication is
available at Elsevier via doi.org/10.1016/j.jpaa.2023.107502.

© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.

https://doi.org/10.1016/j.jpaa.2023.107502
https://creativecommons.org/licenses/by-nc-nd/4.0/


2 PAOLO SARACCO AND JOOST VERCRUYSSE

ring theoretic and Galois theoretic investigations. Thus, a relevant question which arose
very soon is the problem of existence and uniqueness of such globalizations.

A considerable number of globalization results already exists in the literature, either in a
complete form (that is, existence and uniqueness) or in the form of sufficient conditions and
criteria for a partial action to admit a globalization. For instance, we have globalization
theorems for partial actions of groups on topological spaces ([1, 30, 32]), on unital associative
algebras ([22]), on s-unital rings ([21]), on semiprime rings ([12, 18]), we have globalization
theorems for partial actions of Hopf algebras on unital algebras [4, 5] (which however are
not necessarily unital), on k-linear categories [3], for twisted partial actions of Hopf algebras
[7], partial modules over Hopf algebras [9], partial actions of multiplier Hopf algebras [26],
and we have globalization theorems for partial groupoid actions on rings [10], on s-unital
rings [11], on R-categories [33]. Again, we refer to [20] for further references and for a
glimpse of the importance of the globalization procedure.

Lead by the need of a unified approach to the vast panorama of the theory of partial
actions and in order to tackle the globalization problem, in [38] we discussed the question
from a category-theoretical perspective by taking advantage of the notion of geometric
partial comodule introduced in [29]. We also provided a genuine procedure to construct
globalizations (whenever they exist) that can be applied to many concrete cases of interest.
In [39], we already studied globalization of geometric partial comodules in the opposite
of the categories of sets and topological spaces and in the category of algebras over a
commutative ring (or, more precisely, we studied the globalization of geometric partial
modules in Set, Top and Algop

k ). In the present paper we analyse the globalization problem
in abelian categories, proving that in this setting globalization always exists under very
mild conditions, and we apply this result in several concrete situations, recovering on the
one hand some known globalization constructions, and providing on the other hand original
ones, which have been never studied before.

We believe that the globalization results obtained in this paper should help to under-
stand the connection between geometric partial comodules and other structures studied in
literature, such as glider representations [14], which were recently proved to have a rich
homological structure [28]. Future investigations should reveal if the category of geometric
partial comodules could have a similar behaviour.

Concretely, after recalling the main features of the theory of geometric partial comodules
over coalgebras in §2.1 and of the globalization construction in §2.2, we provide in §2.3 a
general method to construct geometric partial comodules out of non-coassociative coactions
(Theorem 2.9). This will allow us, in §3, to easily show how a number of well-studied partial
structures are, in fact, particular instances of geometric partial comodules. Our main result
is presented in §3, where we prove that globalization exists for geometric partial comodules
over flat coalgebras in abelian monoidal categories (see Theorem 3.5). In the subsequent
sections, we apply it in a number of cases of interest. Namely, in §3.2 we show that the
partial modules over a Hopf algebra H, introduced in [8] in terms of partial representations
of H, provide examples of geometric partial comodules in the opposite of the category of
vector spaces. We also show that the so-called standard dilation of a partial representation
as described in [9] (see [2] for the case of partial representations of groups) coincides with the
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globalization of the associated geometric partial comodule. After, in §3.3, we verify that the
globalization for partial representations of finite groups, as introduced and applied in [19],
can be recovered by our approach, too. In §3.4 we prove that the partial comodules arising
from corepresentations as defined in [6] can be viewed as geometric partial comodules, this
time in the category of vector spaces, and we obtain then a globalization theorem for these
“algebraic” partial comodules, a construction that was completely unknown before. Finally,
in §4 we consider geometric partial comodules in the monoidal category of modules over
a bialgebra, introducing in this way a suitable notion of “Hopf partial comodules” and
establishing a globalization result for these, as well. As an application, we present a version
of the fundamental theorem for these Hopf partial comodules and we consider the particular
case of partially graded group representations.

2. Preliminaries: Geometric partial comodules and globalization

2.1. Geometric partial comodules. Let (C,⊗, I) be a (strict) monoidal, locally small
(also known as Set-enriched) category with pushouts. For any object X in C, we usually
denote the identity morphism on X again by X. Moreover, for any algebra A and any
coalgebra H in C, we denote by ModA the category of (right) A-modules and by ComH the
category of (right) H-comodules.

A partial comodule datum over a coalgebra (H, ∆, ε) in C is a cospan

X
ρX

((
X ⊗H

πX
uuuu

X •H

in C where πX is an epimorphism. Any partial comodule datum induces canonically the
following pushouts

X ⊗H
πX

zzzz

ρX⊗H

$$
X •H

ρX•H $$

(X •H)⊗H

πX•Hzzzz
(X •H) •H

��?
?

and

X ⊗H
πX

zzzz
(πX⊗H)◦(X⊗∆)
$$

X •H

X•∆ $$

(X •H)⊗H

πX,∆zzzz
X • (H •H)

��?
?

(1)

Definition 2.1. [29] Let (H, ∆, ε) be a coalgebra in C. A geometric partial comodule over
H is a partial comodule datum (X, X •H, πX , ρX) that satisfies the following conditions.
(GPC1) Counitality: there exists a morphism X •ε : X •H → X which makes the following

diagram commutative

X

IdX ,,

ρX

++
X ⊗HπX

ssss

X⊗εrr

X •H
X•ε
��

X.
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(GPC2) Geometric coassociativity: there exists an isomorphism

θ : X • (H •H)→ (X •H) •H

such that the following diagram commutes

X
ρX //

ρX

��

X •H
ρX•H // (X •H) •H

X •H
X•∆

// X • (H •H)
θ

55

(X •H)⊗H.πX,∆
oooo

πX•H

OOOO

If (X, X • H, πX , ρX) and (Y, Y • H, πY , ρY ) are geometric partial comodules, then a
morphism of geometric partial comodules is a pair (f, f • H) of morphisms in C with
f : X → Y and f •H : X •H → Y •H such that the following diagram commutes

X

f
��

ρX

**
X ⊗HπXtttt

f⊗H
��

X •H

f•H
��

Y
ρY

**
Y ⊗H

πY
tttt

Y •H.

(2)

We will often denote a geometric partial comodule (X, X •H, πX , ρX) simply by X and a
morphism as above simply by f . Moreover, we denote by gPComH the category of geometric
partial comodules over H and their morphisms.

Remark 2.2. Any usual global comodule (Y, δY ) over H is naturally a geometric partial
comodule (Y, Y ⊗ H, IdY ⊗H , δY ). In fact, ComH is a full subcategory of gPComH with
associated embedding functor I : ComH → gPComH .

2.2. Globalization for geometric partial comodules. Let (Y, δY ) be a global comodule
over H. Recall from [29, Example 2.5] that, for a given epimorphism p : Y → X in C, the
pushout

Y (p⊗H)◦δY
))

p

uuuu
X

ρX ))
X ⊗H

πX
uuuu

X •H

��?
? (3)

inherits a structure of partial comodule and p : I(Y )→ X becomes a morphism of partial
comodules. We refer to this as the induced partial comodule structure from Y to X.

Naively speaking, the globalization of a partial comodule X is a universal H-comodule
“covering” X and such that the partial coaction is induced by the global one as above.

Definition 2.3 ([38, Definition 3.1]). Given a partial comodule (X, X • H, πX , ρX), a
globalization for X is a global comodule (Y, δY ) with a morphism p : Y → X in C such that
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(GL1) p is a morphism of partial comodules, that is, the following diagram commutes:

Y

p

��

δY // Y ⊗H
p⊗H // X ⊗H

πX

��
X ρX

// X •H.

(GL2) Y is universal with respect to this property, i.e. there is a bijective correspondence
ComH(Z, Y )→ gPComH(I(Z), X), η 7→ p ◦ η.

(GL3) The corresponding diagram (3) is a pushout square in C.
We say that X is globalizable if a globalization for X exists and we denote by gPComH

gl the
full subcategory of gPComH composed by the globalizable partial comodules.

It can be shown (see [38, Lemma 3.2]) that if (Y, p) is a globalization of a partial comodule
X, then p : Y → X is an epimorphism. Moreover, it follows from axiom (GL2) that a
globalization of a partial comodule X is unique, whenever it exists. Thus, we may speak
about the globalization of X.
Remark 2.4. Axiom (GL3) cannot be omitted in general, as it is not always necessarily
satisfied (see, for instance, [38, Example 3.6]). Nevertheless, there are cases in which an
object satisfying (GL1) and the universal property (GL2), also satisfies (GL3). For instance,
this is the case in Setop. For this reason, axiom (GL3) has been often neglected in the
literature (see e.g. [1, Theorem 1.1], [34, Definition 2.5]).

As already mentioned in Remark 2.4, it is known that non-globalizable partial comodules
may exist. This is the case, for instance, in the category (C)Algk of (commutative) algebras
over a field k (see [38, Corollary 3.7]) or in the opposite Topop of the category of topological
spaces (see [39, Proposition 3.2]). The aim of the present paper is to show that (under
mild assumptions on the coalgebra H or, more precisely, on its category of comodules) over
an abelian monoidal category C we have gPComH = gPComH

gl , obtaining in this way the
optimum among the globalization results.

The following is the main result of [38], Theorem 3.5, for the sake of the reader.
Theorem 2.5. Let H be a coalgebra in a monoidal category C with pushouts. Then a
geometric partial H-comodule X = (X, X •H, πX , ρX) is globalizable if and only if

(1) the following equalizer exists in ComH :

(YX , δ) κ // (X ⊗H, X ⊗∆)
ρX⊗H //

(πX⊗H)◦(X⊗∆)
// (X •H ⊗H, X •H ⊗∆) (4)

(2) the following diagram is a pushout diagram in C:
YX κ

))
(X⊗ε)◦κ

uu
X

ρX ))
X ⊗H

πX
uuuu

X •H.

(5)
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Moreover, if these conditions hold, then the morphism ϵX = (X ⊗ ε) ◦ κ : YX → X is an
epimorphism in C, κ = (ϵX ⊗H) ◦ δ and (YX , ϵX) is the globalization of X.

It deserves to be mentioned (see (GL2)) that the assignment X 7→ YX induces a functor
G : gPComH

gl → ComH which is right adjoint to the natural, fully faithful, inclusion functor
J : ComH → gPComH

gl obtained by corestriction of I : ComH → gPComH .
Let us conclude this section by an alternative description of globalizable partial comodules

in terms of minimal proper covers. Recall from [38, §2.2] that a cover is simply the datum
(Y, X, p) of a global H-comodule (Y, δY ), an object X and an epimorphism p : Y → X in C
and recall that a morphism of covers (Y, X, p)→ (Y ′, X ′, p′) is the datum of a morphism of
H-comodules F : Y → Y ′ and a morphism f : X → X ′ in C such that f ◦p = p′ ◦F . Covers
and their morphisms form the category CovH . The cover (Y, X, p) is said to be proper if

(p⊗H) ◦ δY : Y → X ⊗H

is a monomorphism in ComH (in which case we say that Y is co-generated by X) and a
proper cover is said to be minimal if it does not factor through another proper cover. More
explicitly, if (Y ′, X, p′) is another proper cover such that p = p′ ◦ q for some morphism
q : Y → Y ′ in C, then q is an isomorphism.
Theorem 2.6 ([38, Theorem 3.11]). Assume that the equalizer (4) exists in ComH for
every partial comodule X (e.g., when ComH is complete). If X is a partial comodule that
has been induced by a global comodule, then X is globalizable. That is, we have a functor

Ind : CovH → gPComH
gl

resulting from the induction construction, which has a fully faithful right adjoint Gl given
by Gl(X) = (G(X), X, ϵX). Moreover, for any globalizable partial comodule, Gl(X) is a
minimal proper cover and the functors Ind and Gl induce an equivalence of categories

CovH
pr,min

Ind //∼ gPComH
gl

Gl
oo .

2.3. Non-coassociative coactions. In this section, we present a new general procedure
that allows us to construct a wide class of examples of geometric partial comodules, out of
non-coassociative coactions. Still, not all geometric partial comodules arise in this way, as
Example 2.13 shows. Hence, the theory of partial comodules cannot be simply reduced to
the non-coassociative case.

Let (H, ∆, ε) be a coalgebra in the (strict) monoidal category with pushouts C. Denote
by NComH the category of non-coassociative H-comodules, that is, H-comodules which
are counital but not necessarily coassociative. Explicitly, an object in NComH is an object
X in C endowed with a morphism ∂X : X → X ⊗ H in C satisfying (X ⊗ ε) ◦ ∂X = X.
Morphisms in NComH are maps f : X → X ′ in C such that ∂X′ ◦ f = (f ⊗H) ◦ ∂X .

Let (X, ∂X) be an object in NComH and suppose that an object X •H and a morphism
πX : X ⊗H → X •H exist such that the following parallel morphisms are equal

X
∂X // X ⊗H

∂X⊗H //

X⊗∆
// X ⊗H ⊗H

πX⊗H // (X •H)⊗H (6)
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and such that the following universal property holds: for any other object T and morphism
t : X ⊗H → T in C such that

(t⊗H) ◦ (∂X ⊗H) ◦ ∂X = (t⊗H) ◦ (X ⊗∆) ◦ ∂X

there exists a unique morphism u : X • H → T such that t = u ◦ π. In this case, we
will (improperly) say that (X • H, πX) universally coequalizes the arrows in (6). From
the universal property one easily deduces (by using an argument similar to the case of
coequalizers) that πX : X ⊗H → X •H is an epimorphism. Moreover, the following lemma
and remark show that in many cases of interest, πX : X ⊗H → X •H is in fact a colimit.

Lemma 2.7. In the framework of the foregoing paragraph, the following statements hold.
(1) If the family of morphisms {(X • H) ⊗ f | f : H → I} is jointly monic, then

πX : X ⊗H → X •H is a colimit in C. Namely, it can be realized as the universal
arrow coequalizing the following compositions

X
∂X // X ⊗H

∂X⊗H //

X⊗∆
// X ⊗H ⊗H

X⊗H⊗f // X ⊗H

for all f ∈ Hom(H, I).
(2) If C is complete, the monoidal unit I is a cogenerator in C and the endofunctor

(X •H)⊗− preserves limits, then the condition of (1) holds.

Proof. (1). Consider a small category Z whose set of objects is {Z0, Zf | f ∈ Hom(H, I)}
and whose morphisms are the identity morphisms plus two additional morphisms zf

1 , zf
2 :

Zf → Z0 for each f ∈ Hom(H, I). Define a functor F : Z → C acting on objects as
F (Z0) = X ⊗H and F (Zf ) = X for all f ∈ Hom(H, I)

and on (non-identity) morphisms as
F (zf

1 ) = (X ⊗H ⊗ f) ◦ (∂X ⊗H) ◦ ∂X and F (zf
2 ) = (X ⊗H ⊗ f) ◦ (X ⊗∆) ◦ ∂X .

Then the colimit of F is a universal arrow c : X ⊗H → C which coequalizes the following
compositions for all f ∈ Hom(H, I)

X
∂X // X ⊗H

∂X⊗H //

X⊗∆
// X ⊗H ⊗H

X⊗H⊗f // X ⊗H
c // C .

We can rewrite the above diagram as

X
∂X // X ⊗H

∂X⊗H //

X⊗∆
// X ⊗H ⊗H

c⊗H // C ⊗H
C⊗f // C .

If the family of morphisms {C ⊗ f | f : H → I} is jointly monic, then it is equivalent to
require that the following parallel morphisms are equal

X
∂X // X ⊗H

∂X⊗H //

X⊗∆
// X ⊗H ⊗H

c⊗H // C ⊗H .

This is exactly the universal property of (X •H, πX).
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(2). Recall that, being C complete and locally small, I is a cogenerator if and only
if for every object A in C, the family {f ∈ C(A, I)} is jointly monic, if and only if the
canonical map A→ ∏

f∈C(A,I) If is a monomorphism. Therefore, (2) follows directly from
the definition of a cogenerator, in combination with the fact that, since being monic in a
complete category is a limit condition (in this setting, a morphism f : A → B is monic
if and only if (A, IdA, IdA) is the pullback of A

f−→ B
f←− A), a functor preserving limits

preserves also jointly monic families. □

Remark 2.8. The condition of Lemma 2.7(2) (and hence of (1)) is satisfied, for example,
in C = Vectop

k , in C = Modop
k for k a commutative ring, in C = (Setop,×, {∗}) and in

C = (Topop,×, {∗}). Condition (1) of Lemma 2.7 is also satisfied in C = Vectk, because of
bases. If V is a vector space with basis {ei | i ∈ I}, then the dual elements {e∗

i | i ∈ I}
form a jointly monic family, because the linear map Φ : V → ∏

i∈I k, v 7→ (e∗
i (v))i∈I , is

a monomorphism. In fact, Φ is the composition of the isomorphism ϕ : V → ⊕
i∈I k (by

definition of basis) with the canonical inclusion of ⊕i∈I k into ∏i∈I k. Now, for every vector
space T , the collection B := {T ⊗ e∗

i : T ⊗ V → T | i ∈ I} gives rise to a unique linear map
Ψ : T ⊗ V → ∏

i∈I T which fits into the following commutative diagram

T ⊗ V
T ⊗ϕ

∼=
//

Ψ

��

T ⊗
(⊕

i∈I

k
)

∼=
��∏

i∈I T
⊕
i∈I

T
⊆

oo

and hence B is still a jointly monic family. In particular, for every V, T in Vectk, the family
{T ⊗ f | f : V → k} is jointly monic.

Theorem 2.9. Let (H, ∆, ε) be a coalgebra in C and (X, ∂X) ∈ NComH a counital non-
coassociative H-comodule. If an arrow πX : X ⊗H → X •H that universally coequalizes
the arrows in (6) exists, then (X, X •H, πX , πX ◦ ∂X) is a geometric partial H-comodule.

For the sake of future reference, recall from Remark 2.8 that Vectk, Vectop
k , Modop

k , Setop

and Topop are all monoidal categories for which Theorem 2.9 can be applied.

Proof of Theorem 2.9. Let us first prove that (X •H) •H and X • (H •H), constructed as
in (1), are isomorphic. Applying the coassociativity of H and the naturality of the tensor
product in the unlabelled equalities, we find

(πX,∆ ⊗H) ◦ (πX ⊗H ⊗H) ◦ (∂X ⊗H ⊗H) ◦ (∂X ⊗H) ◦ ∂X

(6)= (πX,∆ ⊗H) ◦ (πX ⊗H ⊗H) ◦ (X ⊗∆⊗H) ◦ (∂X ⊗H) ◦ ∂X

(1)= ((X •∆)⊗H) ◦ (πX ⊗H) ◦ (∂X ⊗H) ◦ ∂X

(6)= ((X •∆)⊗H) ◦ (πX ⊗H) ◦ (X ⊗∆) ◦ ∂X
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(1)= (πX,∆ ⊗H) ◦ (πX ⊗H ⊗H) ◦ (X ⊗∆⊗H) ◦ (X ⊗∆) ◦ ∂X

= (πX,∆ ⊗H) ◦ (πX ⊗H ⊗H) ◦ (X ⊗H ⊗∆) ◦ (X ⊗∆) ◦ ∂X

= (πX,∆ ⊗H) ◦ ((X •H)⊗∆) ◦ (πX ⊗H) ◦ (X ⊗∆) ◦ ∂X

(6)= (πX,∆ ⊗H) ◦ ((X •H)⊗∆) ◦ (πX ⊗H) ◦ (∂X ⊗H) ◦ ∂X

= (πX,∆ ⊗H) ◦ (πX ⊗H ⊗H) ◦ (∂X ⊗H ⊗H) ◦ (X ⊗∆) ◦ ∂X

Hence, by the universal property of (X • H, πX), there exists a (unique) morphism u :
X •H → X • (H •H) such that

u ◦ πX = πX,∆ ◦ (πX ⊗H) ◦ (∂X ⊗H).

Consequently, by the universal property of the pushout (X •H) •H, there exists a (unique)
morphism of cospans α : (X •H) •H → X • (H •H). Similarly, one obtains that

(πX•H ⊗H) ◦ (πX ⊗H ⊗H) ◦ (X ⊗∆⊗H) ◦ (∂X ⊗H) ◦ ∂X

= (πX•H ⊗H) ◦ (πX ⊗H ⊗H) ◦ (X ⊗∆⊗H) ◦ (X ⊗∆) ◦ ∂X

and from this one concludes that there exists a (unique) morphism of cospans β : X • (H •
H) → (X • H) • H. Since the category of cospans over a fixed pair of domains forms a
poset, it follows directly from their existence that α and β are mutual inverses and hence
(X •H) •H and X • (H •H) are isomorphic as cospans.

By definition of X •H we have that coassociativity holds in (X •H)⊗H and hence also
in (X •H) •H = X • (H •H). Thus, X satisfies axiom (GPC2). Concerning counitality,
let us observe that

(X ⊗ ε⊗H) ◦ (∂X ⊗H) ◦ ∂X = ∂X = (X ⊗ ε⊗H) ◦ (X ⊗∆) ◦ ∂X

as maps X → X ⊗ H, by hypothesis on ∂X . By the universal property of X • H there
exists a unique map X • ε : X •H → X such that (X • ε) ◦ πX = X ⊗ ε. Therefore axiom
(GPC1) holds too. Thus, X is a geometric partial comodule. □

The converse of Theorem 2.9 does not hold in general, that is to say, there exist geometric
partial comodules (X, X •H, πX , ρX) in C such that ρX = πX ◦∂X for some non-coassociative
∂X : X → X ⊗ H, but (X • H, πX) does not satisfy the universal property. In fact, for
every (X, ∂X) in NComH the composition ρX := (X ⊗ ε) ◦ ∂X = IdX defines a geometric
partial comodule structure (X, X, X ⊗ ε, IdX) on X (it is enough to observe that requiring
X ⊗ ε to be an epimorphism suffices to prove [29, Proposition 2.20]). However, (X, X ⊗ ε)
rarely universally coequalizes the arrows in (6), as the following example shows.

Example 2.10. Consider C = (Set,×, {∗}). It is well-known (see, for instance, [15,
Lemma 1.3]) that the diagonal map ∆ : H → H ×H, x 7→ (x, x), and the (unique) map
ε : H → {∗}, x 7→ ∗, make of any non-empty set H a coalgebra in C and that this one is the
unique coassociative and counital coalgebra structure one can equip H with. In addition, if
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X is any set and f : X → H is any function, then the assignment
∂X : X → X ×H, x 7→ (x, f(x))

defines a counital coaction (which is automatically coassociative) and all the counital
coactions are of this form. As a consequence, any counital coaction ∂X in Set is in fact
coassociative and hence the pair (X × H, Id) universally coequalizes the arrows in (6).
Therefore, all the geometric partial comodules provided by Theorem 2.9 in C = Set are
global, but not all the geometric partial comodules are so. For instance, for any non-empty
sets H ̸= {∗} and X, the trivial geometric partial H-comodule structure

X X ×H

X×ε
xxxx

X

on X is not global, whence it cannot come from a universal pair (X •H, πX).

It follows from the proof of the next corollary that whenever the underlying category C is
such that a universal object (X •H, πX) coequalizing (6) exists for every non-coassociative
comodule (X, ∂X), then the construction of Theorem 2.9 becomes functorial.

Corollary 2.11 (of Theorem 2.9). Let (H, ∆, ε) be a coalgebra in a cocomplete monoidal
category C for which the family {Y ⊗ f : Y ⊗H → Y | f ∈ C(H, I)} is jointly monic for
every Y in C. Then there exists a faithful functor

P : NComH → gPComH

which commutes with the forgetful functors to C.

Proof. By cocompleteness and by Lemma 2.7, we know that for any object (X, ∂X) in
NComH there exists a morphism πX : X ⊗ H → X • H, universally coequalizing (6).
Hence, it follows from Theorem 2.9 that the functor P can be defined at the level of
objects by P(X, ∂X) = (X, X • H, πX , πX ◦ ∂X). Let us show that for any morphism
f : (X, ∂X) → (X ′, ∂X′) in NComH , the underlying morphism in C is also a morphism of
geometric partial comodules from P(X, ∂X) to P(X ′, ∂X′).

Indeed, by using the defining property of morphisms in NComH we find
(πX′ ⊗H) ◦ (f ⊗H ⊗H) ◦ (∂X ⊗H) ◦ ∂X = (πX′ ⊗H) ◦ (∂X′ ⊗H) ◦ (f ⊗H) ◦ ∂X

= (πX′ ⊗H) ◦ (∂X′ ⊗H) ◦ ∂X′ ◦ f
(6)= (πX′ ⊗H) ◦ (X ′ ⊗∆) ◦ ∂X′ ◦ f

= (πX′ ⊗H) ◦ (X ′ ⊗∆) ◦ (f ⊗H) ◦ ∂X = (πX′ ⊗H) ◦ (f ⊗H ⊗H) ◦ (X ⊗∆) ◦ ∂X .

Then, by the universal property of (X •H, πX), there exists a unique morphism f •H :
X •H → X ′ •H such that

(f •H) ◦ πX = πX′ ◦ (f ⊗H). (7)
By definition of ρX = πX ◦ ∂X , we have that

(f •H) ◦ ρX = (f •H) ◦ πX ◦ ∂X
(7)= πX′ ◦ (f ⊗H) ◦ ∂X = πX′ ◦ ∂X′ ◦ f = ρX′ ◦ f
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and hence
X

f
��

ρX

++
X ⊗HπX

ss
f⊗H
��X •H

f•H
��X ′

ρX′ ++
X ′ ⊗H

πX′
ss

X ′ •H

commutes, making of (f, f •H) a morphism of geometric partial comodules.
Obviously, this turns P into a functor commuting with the forgetful functors, which is

then faithful. □

Before continuing, let us show that the functor P of Corollary 2.11 is in general neither
full, nor essentially surjective on objects. Hence, even in those favourable cases in which
every non-coassociative comodule gives rise to a geometric partial comodule, still not
every geometric partial comodule, nor every geometric partial comodule morphism, can
be obtained in this way, indicating that the category of geometric partial comodules has a
richer structure.
Example 2.12. Consider the 2-dimensional complex coalgebra H generated by a grouplike
element g and a g-primitive element x. That is, H = Cg⊕Cx with comultiplication ∆ and
counit ε defined by

∆(g) = g ⊗ g, ε(g) = 1,

∆(x) = g ⊗ x + x⊗ g, ε(x) = 0.

Now consider V = Cg ⊕ Cx, which is the same complex vector space, but which we endow
with a coaction ∂ : V → V ⊗H defined by

∂(x) = x⊗ g and ∂(g) = g ⊗ g + g ⊗ x.

One can easily verify that this defines a counital but non-coassociative H-comodule. By
applying Lemma 2.7(1) and Theorem 2.9, we obtain a geometric partial comodule structure
on V where V •H = (V ⊗H)/C(g ⊗ x), π : V ⊗H → (V ⊗H)/C(g ⊗ x) is the natural
projection and ρ = π ◦ ∂ : V → V •H is the partial coaction which is given by

ρ(g) = g ⊗ g, ρ(x) = x⊗ g.

Now consider the C-linear map
f : V → V, f(x) = g = f(g).

Then one easily checks that
(f ⊗H)∂(x) = g ⊗ g ̸= ∂f(x) = g ⊗ g + g ⊗ x.

Therefore, f is not a morphism in NComH . On the other hand, (f ⊗H)(g ⊗ x) = g ⊗ x
hence f •H : V •H → V •H is well-defined and(

(f •H) ◦ ρ
)
(g) = g ⊗ g = ρ ◦ f(g),(

(f •H) ◦ ρ
)
(x) = x⊗ g = ρ ◦ f(x),

hence f is a morphism in gPComH . Thus, the functor P from Corollary 2.11 is not full.
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Example 2.13. In C = Abop consider the geometric partial Q-comodule structure on Z
induced by the multiplication of Q, that is to say, consider the pushout in C

Q

Q⊗Z Z

mQ◦(Q⊗Z ιZ) 55

Z6 V
ιZ

ii

Q • Z.

��?
?

ρZ

55
6 V

πZ

ii
(8)

It is well-known that, in fact, Q ⊗Z Q ∼= Q via the multiplication mQ and hence mQ ◦
(Q⊗Z ιZ) = IdQ. Moreover, since it is clear that the pushout in Abop of the pair (IdQ, ιZ) is
nothing else than (Z, ιZ, IdZ), diagram (8) becomes

Q
Q Z3

S
ιZff

Z.

��?
?

3 SιZ

ff

Since there does not exist any non-zero morphism of abelian groups Q → Z, it follows
that the geometric partial Q-comodule (Z,Z, ιZ, IdZ) in C = Abop cannot be obtained
from a non-coassociative comodule structure (X, ∂X) on X as in Theorem 2.9. Therefore,
P : NComQ → gPComQ from Corollary 2.11 is not essentially surjective on objects.

Let us conclude this section by showing that, under mild conditions, the geometric partial
comodules arising from non-coassociative coactions are globalizable.
Proposition 2.14. Let (X, ∂X) ∈ NComH be a non-coassociative counital coaction and
assume that an arrow πX : X⊗H → X •H universally coequalizing (6) exists. Assume also
that the equalizer

(
(Y, δ), κ

)
as in (4) exists in ComH and that it is preserved by the forgetful

functor to C. Then, (Y, δ) becomes the globalization of the geometric partial comodule
(X, X •H, πX , ρX).

Proof. In fact, ∂X equalizes
(
ρX ⊗H, (πX ⊗H) ◦ (X ⊗∆)

)
by definition of πX and hence

there exists a unique morphism σ : X → Y in C such that κ ◦ σ = ∂X . By remembering
that πX ◦ κ = ρX ◦ ϵX , the latter entails that ρX ◦ ϵX ◦ σ = πX ◦ κ ◦ σ = πX ◦ ∂X = ρX

and so ϵX ◦ σ = IdX . Furthermore, if X
f−→ Z

g←− X ⊗ H is a diagram in C such that
f ◦ ϵX = g ◦ (ϵX ⊗H) ◦ δ, then

f ◦ ϵX = g ◦ κ and f = f ◦ ϵX ◦ σ = g ◦ κ ◦ σ = g ◦ ∂X , (9)
whence

(g ⊗H) ◦ (X ⊗∆) ◦ ∂X = (g ⊗H) ◦ (X ⊗∆) ◦ κ ◦ σ = (g ⊗H) ◦ (κ⊗H) ◦ δ ◦ σ

(9)= (f ⊗H)◦ (ϵX ⊗H)◦ δ ◦σ = (f ⊗H)◦κ◦σ = (f ⊗H)◦∂X
(9)= (g⊗H)◦ (∂X ⊗H)◦∂X ,

where in the second equality we used the fact that κ is a morphism of H-comodules. By
the universal property of πX , there exists a unique τ : X •H → Z such that τ ◦ πX = g

and so, as a consequence, τ ◦ ρX = τ ◦ πX ◦ ∂X = g ◦ ∂X
(9)= f . Summing up, diagram (5) is

a pushout square and so the conditions of Theorem 2.5 are satisfied. □
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3. Globalization in abelian monoidal categories

3.1. Geometric partial comodules in abelian categories. Assume that C is an abelian
monoidal category and that (H, ∆, ε) is any coalgebra in C. Our first aim is to establish
a general criterion for the existence of globalization, which will then allow us to conclude
that geometric partial comodules are always globalizable if the coalgebra is flat. To this
aim, let us recall the following well-known fact.

Lemma 3.1 ([36, Note to §2.4 at page 34]). Consider a square
Ag

xx
f
&&

B

k
&&

C

h
xx

D

where f is a monomorphism and h is an epimorphism. Then in an abelian category, this is
a pushout (cocartesian) square if and only if it is a pullback (cartesian) square.

Proposition 3.2. Assume that (X, X •H, πX , ρX) is a partial comodule datum satisfying
the counitality condition (GPC1). Consider the pullback

T
ϖ

uu

λ
))??��

X
ρX ))

X ⊗H

πX
uuuu

X •H

in C. Then (X, X •H, πX , ρX) is a geometric partial H-comodule if and only if

T
λ // X ⊗H

ρX⊗H //

(πX⊗H)◦(X⊗∆)
// X •H ⊗H (10)

is an equalizer in C.

Proof. We begin by proving that X is a geometric partial comodule if and only if
(ρX ⊗H) ◦ λ = (πX ⊗H) ◦ (X ⊗∆) ◦ λ. (11)

Let us consider the following diagrams

T

(t)ϖ

��

// λ //
⌟

X ⊗H

(a)πX
����

// ρX⊗H // X •H ⊗H

πX•H
����

X //
ρX

// X •H //
ρX•H

// (X •H) •H
⌜

(12)

and
T

(t)

// λ //

ϖ

��

⌟
X ⊗H

(πX⊗H)◦(X⊗∆)
//

πX
����

X •H ⊗H

πX,∆
����

X //
ρX

// X •H //
X•∆

// X • (H •H)⌜
(13)
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where, by Lemma 3.1, (t) is also a pushout square and (a) is also a pullback square. If (11)
holds, then (X •H) •H and X • (H •H) are pushouts of the same diagram and hence
there exists a unique isomorphism θ : X • (H •H)→ (X •H) •H such that

θ ◦ (X •∆) ◦ ρX = (ρX •H) ◦ ρX and θ ◦ πX,∆ = πX•H ,

which is the geometric coassociativity (GPC2). Conversely, assume that (GPC2) is satisfied.
Then, in view of the commutativity of (13) and by the universal property of T as a pullback
of (12), there exists a unique morphism σ : T → T such that

ϖ ◦ σ = ϖ and (ρX ⊗H) ◦ λ ◦ σ = (πX ⊗H) ◦ (X ⊗∆) ◦ λ.

By applying X • ε⊗H to both sides of the latter equality, we conclude that λ ◦ σ = λ and,
being λ a monomorphism, that σ = IdT .

Now, let us show that (11) holds if and only if (10) is an equalizer. Since one implication
is trivial, let us focus on the other. Call (E, e) the equalizer of ρX⊗H and (πX⊗H)◦(X⊗∆)
in C. If (11) holds, then λ equalizes ρX ⊗H and (πX ⊗H) ◦ (X ⊗∆), whence there exists
a unique morphism τ : T → E such that e ◦ τ = λ. On the other hand, since

ρX ◦ (X ⊗ ε) ◦ e = (X •H ⊗ ε) ◦ (ρX ⊗H) ◦ e

= (X •H ⊗ ε) ◦ (πX ⊗H) ◦ (X ⊗∆) ◦ e = πX ◦ e,

there exists a unique morphism τ ′ : E → T such that λ ◦ τ ′ = e and ϖ ◦ τ ′ = (X ⊗ ε) ◦ e.
Being λ a monomorphism in C, from λ ◦ τ ′ ◦ τ = e ◦ τ = λ it follows that τ ′ ◦ τ = IdT . Being
e a monomorphism in C, from e ◦ τ ◦ τ ′ = λ ◦ τ ′ = e it follows that τ ◦ τ ′ = IdE as well, thus
proving that E ∼= T . □

Let (X, X •H, πX , ρX) be a geometric partial H-comodule in C and let (YX , δ) be the
global comodule from Theorem 2.5(1), i.e. YX is the equalizer of the diagram (4) in ComH .
Remark that by Proposition 3.2, the object T is the equalizer of the same diagram (10), but
in the underlying abelian category C. Consequently, the universal property of the equalizer
induces a morphism ξ : YX → T in C. With this notation we have the following result.

Corollary 3.3. Let (X, X • H, πX , ρX) be a geometric partial H-comodule in C and let
(YX , δ) be the equalizer of the diagram (4) in ComH . If the canonical morphism ξ : YX → T
is an epimorphism in C, then YX is the globalization of X.

Proof. Consider the commutative diagram

YX

ϵX

��

κ

��

ξ����
T

ϖ
xx

&&

λ &&

??��

X &&

ρX &&

X ⊗H

πXxxxx
X •H

(a)



GLOBALIZATION OF GEOMETRIC PARTIAL COMODULES IN ABELIAN CATEGORIES 15

By Lemma 3.1, the square (a) is a pushout square, and since ξ is an epimorphism, it follows
that the outer square is a pushout as well, making of YX the globalization as claimed. □

From Corollary 3.3 it is clear that to know if geometric partial comodules are globalizable,
we should be able to compare equalizers in ComH and C. We call an object C in an
abelian monoidal category C left flat if the endofunctor −⊗ C : C → C preserves equalizers
(equivalently, − ⊗ C is left exact, i.e. it preserves finite limits, since the preservation of
finite (bi)products is automatic for additive functors). Let us therefore recall the following
known (folklore) facts (the proof is based on [40, 3.4]).
Proposition 3.4. Let H be a coalgebra in an abelian monoidal category C. Then the category
ComH has finite colimits and finite biproducts, and the forgetful functor F : ComH → C
preserves them. Moreover, if one of the following equivalent conditions holds:

(1) F preserves equalizers;
(2) F creates equalizers;
(3) H is left flat in C;

then ComH is abelian as well. In addition, if −⊗H preserves coequalizers (equivalently,
it is right exact, i.e. it preserves finite colimits – this is the case, for example, when C is
closed monoidal), then any of the foregoing conditions (1) - (3) is equivalent to:

(4) F preserves monomorphisms.
Proof. For the first statement, recall from (the dual verion of) [13, Proposition 4.3.1] that
for any coalgebra in any monoidal category, the forgetful functor F creates colimits. Being C
abelian, this implies that ComH is finitely cocomplete. Using the fact that finite coproducts
in C are biproducts, it is then a standard verification that the canonical projections are
colinear and hence finite coproducts ComH are biproducts as well.

Suppose then that F creates equalizers. Since C is abelian, and so it has all equalizers, it
follows that ComH has all equalizers. Combined with the above, this tells us that ComH is
finitely complete and cocomplete, it has biproducts and that F preserves all of these. In
particular, kernels and cokernels exist in ComH and they can be computed in C. As C is
abelian, ComH will be abelian as well.

Regarding the equivalent statements, it follows directly from (the dual of) [13, Proposition
4.3.2] that (3) implies (2). By definition, (2) implies (1). To see that (1) implies (3), consider
any equalizer in C. Since the functor −⊗H : C → ComH is a right adjoint to F , it preserves
equalizers. By assumption (1), the resulting equalizer in ComH is preserved by the forgetful
functor and hence −⊗H : C → C preserves equalizers.

Finally, if we assume (1), then we already know that ComH is abelian and so any
monomorphism is an equalizer. Thus, (1) implies (4). If instead we assume (4), then we can
deduce as above that −⊗H : C → C preserves monomorphisms: if f is a monomorphism
in C, then f is a kernel in C and so f ⊗H is a kernel (whence, a monomorphism) in ComH .
Therefore, f ⊗ H is a monomorphism in C. Now, it is a well-known fact that a functor
between abelian categories is exact (i.e. it is left and right exact) if and only if it is right
exact and it preserves monomorphisms. Hence, under the additional hypothesis that −⊗H
preserves coequalizers, (4) implies (3). □
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Let us remark that it is possible that ComH has all equalizers even when H is not left
flat. In [37] it is indeed shown that when C is of the form Modk for a commutative ring k or
AModA for a (possibly non-commutative) ring A, ComH is always complete. Moreover, in
[24, Example 1.1] an example of a non-flat coring is presented whose category of comodules
is Abelian (even Grothendieck).

Theorem 3.5. Let C be an abelian monoidal category and let H be a coalgebra in C which
is left flat. Then gPComH

gl = gPComH .

Proof. By proposition 3.4, the equalizer (4) exists in ComH and its object part YX can be
computed in C. Hence YX is canonically isomorphic to the object T from Proposition 3.2.
Therefore, the result follows immediately from Corollary 3.3. □

Our next result is an improvement of Theorem 2.6 in the abelian case.

Theorem 3.6. For a coalgebra (H, ∆, ε) in an abelian monoidal category C such that ComH

admits the equalizer (4) for every partial comodule X and ComH → C preserves them, every
proper global cover is minimal. Consequently, the equivalence of Theorem 2.6 induces an
equivalence between the categories gPComH and CovH

pr.

Proof. First of all, Corollary 3.3 entails that the full subcategory of globalizable geometric
partial comodules gPComH

gl coincides with the ambient category gPComH . Moreover, if we
consider a proper global covering (Y, X, p) and we perform the pushout

Y
p

xxxx
&& (p⊗H)◦δY
&&

X &&
ρX &&

X ⊗H
πX
xxxx

X •H

��?
? (14)

then, in view of the fact that (p ⊗ H) ◦ δY is a monomorphism and of Lemma 3.1, (14)
is also a pullback diagram. By Proposition 3.2, this implies that the canonical morphism
(ηY , IdX) : (Y, X, p)→ (YX , X, ϵX) is in fact an isomorphism and hence every proper cover
is also minimal, as YX is minimal. □

Remark 3.7. Notice that, despite gPComH
gl = gPComH and CovH

pr,min = CovH
pr, over an abelian

category C as in Theorem 3.6, it is not necessarily true that every global covering is proper.
If we consider the group-like bialgebra C[X] and the projection p : C[X]→ C, Xn 7→ δ0,n,
then (C[X],C, p) is a well-defined non-proper global covering.

In the framework of classical (co)algebras over a commutative ring, the following restate-
ment of Theorem 3.6 explains why the category of geometric partial (co)modules contains
more information than the category of ordinary (co)modules.

Corollary 3.8. Let k be a commutative ring.
(1) If A is a k-algebra, then (left) geometric partial modules over A can be identified

with pairs (M, V ) where M is a (global) A-module and V is a chosen generating
k-submodule of M . Morphisms of geometric partial modules are A-linear morphisms
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of the corresponding A-modules which map generating submodules to generating sub-
modules.

(2) If C is a k-coalgebra that is flat as left k-module, then (right) geometric partial
comodules over C can be identified with pairs (M, V ) where M is a (global) C-comodule
together with a chosen k-submodule V satisfying δ(M) ∩ (V ⊗ C) = 0. Morphisms
of geometric partial comodules are C-colinear morphisms between the corresponding
C-comodules which restrict to the chosen k-submodules.
Equivalently, they can be described as global C-comodules M together with a chosen
co-generating quotient k-module N . In this case, morphisms of geometric partial
comodules are C-colinear morphisms between the corresponding C-comodules which
factors through the co-generating quotient k-modules.

Proof. It follows directly from Theorem 3.6, by spelling out the co-generating condition (and
keeping in mind that in (2) the coalgebra C is assumed to be k-flat). For the first claim in
(2) one needs, more precisely, to observe also that a global comodule M is co-generated by
a quotient k-module N via a surjective k-linear map p : M → N if and only if V := ker(p)
is such that δ(M) ∩ (V ⊗ C) = 0. □

3.2. Partial modules over Hopf algebras (and dilations). Assume that k is a field
and that (H, µ, u, ∆, ε, S) is a Hopf k-algebra. Take C = Vectop

k , the opposite of the category
of vector spaces over k. It is an abelian monoidal category for which Theorem 3.5 holds for
any coalgebra in C. Since (H, µ, u) is a coalgebra therein, gPComH

gl = gPComH in view of
§3.1. Recall the following definition from [8, Definition 5.1 and Remark 5.2].
Definition 3.9. A (left) partial module over H is a vector space M together with a linear
map λ : H ⊗M →M, h⊗m 7→ h ·m, such that

(1) 1H ·m = m,
(2) h ·

(
k(1) ·

(
S(k(2)) ·m

))
= (hk(1)) ·

(
S(k(2)) ·m

)
,

(3) k(1) ·
(
S(k(2)) · (h ·m)

)
= k(1) ·

(
S(k(2))h ·m

)
,

for all m ∈M , h, k ∈ H. If (M, λ) and (M ′, λ′) are partial H-modules, then a morphism
of partial H-modules is a k-linear map f : M → M ′ satisfying f (h ·m) = h ·′ f(m) for
all h ∈ H, m ∈ M . The category whose objects are the partial H-modules and whose
morphisms are the ones defined above is the category PModH .
Remark 3.10. For the sake of precision, [8, Remark 5.2] involves five axioms instead of just
the three above, but in fact the missing two are redundant. See [6, Lemma 2.11].
Proposition 3.11. Any partial H-module can be endowed with a geometric partial comodule
structure over the coalgebra H in the abelian monoidal category C = Vectkop, with

H •M =
{∑

i

hi ⊗mi ∈ H ⊗M

∣∣∣∣∣ ∑
i

k · (hi ·mi) =
∑

i

khi ·mi ∀ k ∈ H

}
. (15)

This induces a faithful functor
P : PModH →

(
gPComH

)op
.
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Proof. Since a partial H-module is, in particular, a counital coaction of the coalgebra H
in Vectop

k and since Vectop
k is a cocomplete category for which Lemma 2.7 holds, we can

apply Theorem 2.9 to conclude that the first claim holds and Lemma 2.7 itself to explicitly
describe H •M as the limit of the pairs

H ⊗M
f⊗H⊗M // H ⊗H ⊗M

H⊗λ //

µ⊗M
// H ⊗M

λ // M

for all f ∈ Homk (k, H). Concerning the second claim, a morphism of partial modules
f : (M, λ) → (M ′, λ′) induces a map H • f : H •M → H •M ′ which makes diagram (2)
to commute. Therefore, P(f) = (f, H • f) is a morphism of partial comodules and P is a
functor. It is clearly faithful. □

Definition 3.12 ([9, Definition 4.1]). A dilation for a partial module (M, λ) is a triple
(N, T, θ) where: (i) N is a global H-module with action δ : H ⊗ N → N, h ⊗ n 7→ h ▷ n,
(ii) T is a linear endomorphism of N satisfying T 2 = T and

T
(
h(1) ▷ T

(
S(h(2)) ▷ y

))
= h(1) ▷ T

(
S(h(2)) ▷ T (y)

)
for all h ∈ H, y ∈ N , and (iii) θ : M → T (N) is an isomorphism of vector spaces satisfying

θ (h ·m) = T (h ▷ θ(m)) . (16)

A dilation (N, T, θ) is called proper if N is generated by T (N) = θ(M) as an H-module and
it is called minimal when N does not contain any H-submodule that is annihilated by T .

It is useful to consider the map ϖ : N →M, ϖ(n) = θ−1(T (n)), so that (16) becomes

h ·m = ϖ (h ▷ θ(m)) (17)

for all m ∈M , h ∈ H.
In [9, Theorem 4.3] it has been proven that every partial module admits a proper and

minimal dilation, called the standard dilation, which is unique up to isomorphism. Moreover,
this construction leads to a functor D : PModH → ModH .

Since C = Vectop
k is an abelian monoidal category for which ComH is complete and

ComH → C preserves limits for every coalgebra H, we know from §3.1 that every geometric
partial comodule in C is globalizable. Let us now show that, for geometric partial comodules
coming from partial H-modules, this globalization coincides with the standard dilation.

Theorem 3.13. For a partial H-module (M, λ), the standard dilation (M, Tλ, φ) is the
globalization of the associated geometric partial comodule in C.

Proof. Every partial H-module (M, λ) can be realized as a subspace of Hom (H, M) via the
morphism ȷ : M → Hom (H, M) given by ȷ(m)(h) = h ·m, for all m ∈M , h ∈ H. Observe
that Hom (H, M) is a global H-module with δ : H⊗Hom (H, M)→ Hom (H, M) , h⊗ f 7→
fµ(-⊗ h). In [9, proof of Theorem 4.3], the standard dilation

(
M, Tλ, φ

)
of M has been

constructed as the H-submodule of Hom (H, M) generated by the image of the map ȷ. In
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particular, we have a commutative diagram

Hom (H, M)

M

⊆
OO

M

φ
::

ȷ

;;

H ⊗M

δ◦(H⊗φ)

dd
δ◦(H⊗ȷ)

cc

H •M

πM

::

ρM

dd

which entails that (the opposite of) φ : M →M is a morphism of partial H-comodules.
Now, since C is abelian, we know from §3.1 that the associated geometric partial comodule

(M, H •M, πM , ρM) admits a globalization (Y, ν) where ν : H ⊗ Y → Y, h ⊗ y 7→ h ⋄ y.
By construction, the standard dilation (M, Tλ, φ) is a global H-comodule in C together
with a morphism φop : M → M in C of partial comodules. Thus, there exists a unique
H-colinear morphism σop : M → Y in C such that ϵop

M ◦op σop = (σ ◦ ϵM)op = φop in C,
by the universal property of Y . Let us prove that σ is an isomorphism. Since M , as an
H-module, is generated by φ(M), we have that

x =
∑

i

hi ▷ φ(mi) =
∑

i

hi ▷ σϵM(mi) = σ

(∑
i

hi ⋄ ϵM(mi)
)

for every x ∈M and so σ is surjective. To prove that it is injective as well, recall that the
canonical epimorphism κ : H ⊗M → Y of the coequalizer

H ⊗H •M
H⊗ρM //

(µ⊗M)◦(H⊗πX)
// H ⊗M

κ // Y (18)

in Vectk satisfies κ = ν ◦ (H ⊗ ϵM) (see Theorem 2.5), that is κ(h⊗m) = h ⋄ ϵM (m) for all
h ∈ H, m ∈M . Hence σ additionally satisfies σ ◦ κ = δ ◦ (H ⊗ φ). Thus, if y ∈ Y is such
that σ(y) = 0, then

0 = σ (y) = σ

(
κ

(∑
i

hi ⊗mi

))
=
∑

i

hi ▷ φ (mi) (19)

where ∑i hi ⊗mi ∈ H ⊗M is such that κ (∑i hi ⊗mi) = y. However, if ∑i hi ▷ φ (mi) = 0,

0 = ϖ

(∑
i

hi ▷ φ (mi)
)

(17)=
∑

i

hi ·mi

and hence ∑
i

k · (hi ·mi) = k ·
(∑

i

hi ·mi

)
= 0 (19)= ϖ

(
k ▷

(∑
i

hi ▷ φ (mi)
))
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=
∑

i

ϖ (khi ▷ φ (mi))
(17)=

∑
i

khi ·mi,

for all k ∈ H, which entails that ∑i hi ⊗mi ∈ H •M by (15). As a consequence,

y = κ

(∑
i

hi ⊗mi

)
= (κ ◦ (µ⊗M) ◦ (H ⊗ πM))

(∑
i

1⊗ hi ⊗mi

)
(18)= (κ ◦ (H ⊗ ρM))

(∑
i

1⊗ hi ⊗mi

)
= κ

(
1⊗

∑
i

hi ·mi

)
= 0

and σ is injective. □

Corollary 3.14. Denote by J : ModH → PModH the inclusion functor and by D :
PModH → ModH the dilation functor. We have that G ◦ P ∼= D : PModH → ModH and
P ◦ J ∼= I : ModH → PModH , whence the inner and outer triangle in following diagram
commute

ModH =
(
ComH

)op

J

vv

I
))

PModH

D

66

P
//
(
gPComH

)opG

ii

where the globalization functor G is now left adjoint of the inclusion functor I and where
gPComH and ComH denote the categories of geometric partial comodules and of global
comodules over the coalgebra (H, µ, u) in C = Vectop

k , respectively.
Remark that the functors D and J above are not adjoints. Rather, we have for all

M ∈ PModH and N ∈ ModH , natural transformations
ModH

(
D(M), N

) ∼= gPComH
(
P(M),PJ (N)

)
⊃ PModH

(
M,J (N)

)
where the latter inclusion is not an equality (as P is faithful but not full).

Let us conclude this subsection by inflecting Proposition 3.11 in a concrete example of
interest and by computing the resulting globalization.
Example 3.15 (inspired by [8, §6.2]). Let C2 = {1, g} be the cyclic group of order 2
generated by some element g and let H := kC2 be its group Hopf algebra. By [8, Theorem
4.2], partial modules over kC2 can be identified with modules over the associated partial
Hopf algebra Hpar. By [8, Definition 4.1] (and in view of [6, Lemma 2.11]),

Hpar = T (H)
/〈1T (H) − 1H , h⊗ k(1) ⊗ S(k(2))− hk(1) ⊗ S(k(2)),

k(1) ⊗ S(k(2))⊗ h− k(1) ⊗ S(k(2))h

∣∣∣∣∣∣ h, k ∈ H

〉
,

that is to say, by setting x := [g] and y := [1],

Hpar = k⟨x, y⟩
/〈1− y, y3 − y2, yx2 − x2,

xy2 − xy, x3 − xy

〉
∼= k[X]/⟨X3 −X⟩.

Therefore, any partial module over kC2 is the same thing as a vector space V together with
a distinguished linear endomorphism T such that (T + IdV )T (T − IdV ) = 0. The partial
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H-action is uniquely determined by 1 · v = v and g · v = T (v) for all v ∈ V . Decompose
V = V−1 ⊕ V0 ⊕ V1 into its eigenspaces, where V0 = ker(T ), and set c(V ) := V−1 ⊕ V1 (this
is the global core of V in the sense of [9, Theorem 2.5]). In this setting,

H • V =
{
1⊗ v + g ⊗ w | ∀h ∈ H, h · (g · v) = hg · v

}
=
(
1⊗ V

)
⊕
(
g ⊗ c(V )

)
.

Let us compute the globalization of (V, H • V, πV , ρV ). To this aim, fix bases Bi of Vi for
i ∈ {0,±1} and notice that

H ⊗H • V = spank

{1⊗ 1⊗ v, g ⊗ 1⊗ v,

1⊗ g ⊗ w, g ⊗ g ⊗ w

∣∣∣∣ v ∈ B−1 ∪ B0 ∪ B1

w ∈ B−1 ∪ B1

}
.

Since the first row is made of elements in the equalizer of H ⊗ ρV and (µ⊗ V ) ◦ (H ⊗ πV ),
we conclude that

Y := (H ⊗ V )
/

spank

{ 1⊗ g · v − g ⊗ v, 1⊗ v − g ⊗ g · v
1⊗ g · w − g ⊗ w, 1⊗ w − g ⊗ g · w

∣∣∣∣ v ∈ B−1

w ∈ B1

}
= (H ⊗ V )

/
spank {1⊗ v + g ⊗ v, 1⊗ w − g ⊗ w | v ∈ B−1, w ∈ B1} .

Set t := (1 + g)/2 and s := (1− g)/2 in kC2. Then

Y ∼= (H ⊗ V )
/

spank

{
t⊗ v,

s⊗ w

∣∣∣∣ v ∈ B−1,

w ∈ B1

}
∼= (H ⊗ V0)⊕ (s⊗ V−1)⊕ (t⊗ V1)

with regular left H-action and, by writing v = v−1 + v0 + v1,
ϵ : V → Y, v 7→ (1⊗ v0) + (s⊗ v−1) + (t⊗ v1).

Notice also that, since s + t = 1, Y ∼= (V0 ⊕ V−1)⊕ (V0 ⊕ V1). This is in accordance (up to
isomorphism) with [9, Example 4.11], as expected.

3.3. Partial representations of finite groups. Partial representations of groups can
be viewed as a particular instance of partial representations of Hopf algebras, and hence
the results of the previous section can be applied to recover the dilation of partial group
representations from [2] by means of our globalization. However, in [19, §1.2] an alternative,
apparently ad hoc, globalization theorem for partial representations of finite groups on
complex vector spaces is presented. Here, we show that the globalization studied therein is
a particular instance of the globalization for partial modules over Hopf algebras.

Definition 3.16 ([22, Definition 6.1]). A partial representation (V, π) of a group G on a
complex vector space V is a map π : G→ EndC(V ) such that for all g, h ∈ G

(PR1) π(1G) = IdV ;
(PR2) π(g−1)π(gh) = π(g−1)π(g)π(h);
(PR3) π(gh)π(h−1) = π(g)π(h)π(h−1).
As a matter of notation, one sets Vg := π(g)π(g−1)(V ) for all g ∈ G. For (V, π) and (V ′, π′)
two partial representations of G, a morphism of partial representations is a linear map
f : V → V ′ such that f ◦π(g) = π′(g)◦f for all g ∈ G. In particular, partial representations
of a group form a category that we denote by PRepG.
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Any partial representation (V, π) of a group G gives rise to a partial module over the
group Hopf algebra C[G] in the sense of Definition 3.9. Therefore, in view of Proposition
3.11, it gives rise to a geometric partial comodule in Vectop

C and hence one may consider the
globalization of V in the sense of Definition 2.3, which by the foregoing coincides (up to
isomorphism) with the proper minimal dilation of V in the sense of [9, Definition 4.1].

Concretely, notice that the globalization YV of (V, π) can be realized as the quotient
(C[G]⊗ V )/S where S ⊆ C[G]⊗ V is the vector subspace generated by∑

g∈G

hg ⊗ vg −
∑
g∈G

h⊗ π(g)(vg)
∣∣∣∣∣∣h ∈ G and

∑
g∈G

π(k)π(g)(vg) =
∑
g∈G

π(kg)(vg),∀ k ∈ G

 .

On the other hand, the globalization V from [19, Theorem 1.18] is realized as the quotient
of C[G]⊗ V by Z, the C-vector subspace generated by{

hg ⊗ v − h⊗ π(g)(v)
∣∣∣ g, h ∈ G, v ∈ Vg−1

}
.

Once recalled that C[G]⊗V has a natural left C[G]-module structure given by multiplication
on the left tensorand, one observes that

S = C[G] ·
∑

g∈G

g ⊗ vg −
∑
g∈G

1⊗ π(g)(vg)
∣∣∣∣∣∣
∑
g∈G

π(k)π(g)(vg) =
∑
g∈G

π(kg)(vg),∀ k ∈ G


and Z = C[G] ·

{
g ⊗ v − 1⊗ π(g)(v)

∣∣∣ g ∈ G, v ∈ Vg−1

}
.

Proposition 3.17. In C[G]⊗ V we have S = Z.

Proof. For every g, h ∈ G and for all v ∈ Vg−1 = π(g−1)π(g)(V ) we have that

π(h)π(g)(v) = π(h)π(g)π(g−1)π(g)(v) (P R3)= π(hg)π(g−1)π(g)(v) = π(hg)(v),
whence g ⊗ v − 1⊗ π(g)(v) ∈ S and so Z ⊆ S. Conversely, let ∑g∈G g ⊗ vg ∈ C[G]⊗ V be
such that ∑

g∈G

π(k)π(g)(vg) =
∑
g∈G

π(kg)(vg) for all k ∈ G. (20)

Observe that∑
g∈G

g ⊗ vg −
∑
g∈G

1⊗ π(g)(vg) + Z

=
∑

g∈G

g ⊗
(
vg − π(g−1)π(g)(vg)

)+
∑

g∈G

g ⊗ π(g−1)π(g)(vg)−
∑
g∈G

1⊗ π(g)(vg)
+ Z

(P R2)=
∑
g∈G

g ⊗
(
vg − π(g−1)π(g)(vg)

)
+ Z

in (C[G] ⊗ V )/Z and set wg := vg − π(g−1)π(g)(vg) for all g ∈ G. Condition (PR3) and
(20) entail that ∑g∈G π(kg)(wg) = 0 for all k ∈ G. In particular, if there exists a h ∈ G
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such that vh ̸= π (h−1) π (h) (vh), we may take k = h−1 and find

wh = −
∑
g ̸=h

π
(
h−1g

)
(wg) . (21)

As a consequence,

∑
g∈G

g ⊗ wg = h ·

∑
g ̸=h

h−1g ⊗ wg −
∑
g ̸=h

1⊗ π(h−1g)(wg)


and hence
∑
g∈G

g ⊗ vg −
∑
g∈G

1⊗ π(g)(vg) + Z = h ·

∑
g ̸=h

h−1g ⊗ wg −
∑
g ̸=h

1⊗ π(h−1g)(wg)
+ Z.

Now, since for all k ∈ G we have∑
g ̸=h

π
(
kh−1g

)
(wg) =

∑
g∈G

π
(
kh−1g

)
(wg)− π(k)(wh) = −π(k)(wh) (21)=

∑
g ̸=h

π(k)π
(
h−1g

)
(wg),

and inductive argument leads to conclude that ∑g∈G g ⊗ vg −
∑

g∈G 1⊗ π(g)(vg) + Z = Z
and hence that S ⊆ Z, thus finishing the proof. □

Corollary 3.18. The globalization of a partial representation (V, π) of G as in [19, Theorem
1.18] coincides with the globalization from Theorem 2.5.

3.4. Algebraic partial comodules over Hopf algebras. Let k be a field and consider
a Hopf algebra (H, µ, u, ∆, ε, S) over k, as in §3.2. Let C = Vectk, which is again an
abelian monoidal category for which Theorem 3.5 holds for any coalgebra, and consider
the coalgebra (H, ∆, ε) therein. As in §3.2, we have that gPComH

gl = gPComH . Recall the
following definition from [6], which is the categorical dual of Definition 3.9.

Definition 3.19 ([6, Definition 3.1, Lemma 3.3]). An algebraic partial (right) H-comodule
is a k-vector space M with a k-linear map ∂M : M →M ⊗H, m 7→ m[0] ⊗m[1], satisfying

(1) (M ⊗ ε) ◦ ∂M = IdM ,
(2) (M ⊗H ⊗ µ) ◦ (M ⊗H ⊗ S ⊗H) ◦ (M ⊗∆⊗H) ◦ (∂M ⊗H) ◦ ∂M = (M ⊗H ⊗ µ) ◦

(M ⊗H ⊗ S ⊗H) ◦ (∂M ⊗H ⊗H) ◦ (∂M ⊗H) ◦ ∂M ,
(3) (M ⊗ µ⊗H) ◦ (M ⊗ S ⊗H ⊗H) ◦ (M ⊗H ⊗∆) ◦ (∂M ⊗H) ◦ ∂M = (M ⊗ µ⊗H) ◦

(M ⊗ S ⊗H ⊗H) ◦ (∂M ⊗H ⊗H) ◦ (∂M ⊗H) ◦ ∂M .
A morphism between two algebraic partial H-comodules (M, ∂M) and (N, ∂N) is a linear
map f : M → N satisfying ∂N ◦ f = (f ⊗H) ◦ ∂M .

Let us see that any algebraic partial H-comodule can be endowed with a geometric
partial H-comodule structure as well. To this aim, fix a basis {hi | i ∈ I} for the Hopf
algebra H and write, for each i ∈ I,

∆(hi) =
∑
j,k

ai
j,khj ⊗ hk,
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where only a finite number of the coefficients ai
j,k ∈ k is non-zero. Let (M, ∂M) be an

algebraic partial comodule and consider a basis {mℓ | ℓ ∈ L} for M . Then we can write
∂M(mℓ) =

∑
p,i

bℓ
p,imp ⊗ hi

for each ℓ ∈ L, where only a finite number of the coefficients bℓ
p,i ∈ k is non-zero.

Proposition 3.20. Let (M, ∂M ) be an algebraic partial comodule over the Hopf algebra H.
By keeping the notation introduced above, M can be endowed with a structure of geometric
partial H-comodule (M, M •H, πM , ρM ) by taking M •H := M ⊗H/Q, where Q ⊂M ⊗H
is the subspace generated by the elements∑

q,p,k

bℓ
p,tb

p
q,kmq ⊗ hk −

∑
q,p,k

bℓ
q,pap

k,tmq ⊗ hk

for all ℓ ∈ L, t ∈ I, with πM : M⊗H →M •H the canonical projection and ρM := πM ◦∂M .

Proof. This is a straightforward application of Theorem 2.9. Indeed, for C = Vectk the
conditions of Lemma 2.7 are fulfilled and the prescribed colimit M •H can be computed as
in the statement, since for any ℓ ∈ L and f ∈ Homk (H,k) we have

(M ⊗H ⊗ f)
(
(∂M ⊗H)

(
∂M(mℓ)

))
=

∑
q,p,k,i

f(hi)bℓ
p,ib

p
q,kmq ⊗ hk

and
(M ⊗H ⊗ f)

(
(M ⊗∆)

(
∂M(mℓ)

))
=

∑
q,p,k,i

f(hi)bℓ
q,pap

k,imq ⊗ hk. □

Theorem 3.21. Algebraic partial H-comodules admit a globalization.

Proof. Since C = Vectk is an abelian monoidal category for which ComH is complete and
ComH → C preserves limits for every coalgebra H, the result follows from Theorem 3.5. □

As we did for partial modules in §3.2, let us inflect Proposition 3.20 and Theorem 3.21
in a concrete example of interest.

Example 3.22. Let H4 be Sweedler’s four dimensional Hopf algebra. As an algebra, H4
is generated by two elements g, y subject to the relations g2 = 1, y2 = 0 and yg = −gy.
Therefore, as a vector space over k, H4 is generated by 1, g, y, gy. Its Hopf algebra structure
is uniquely determined by ∆(g) = g⊗ g and ∆(y) = y⊗ g + 1⊗ y. Consider M := k[z], the
k-vector space of polynomials in z, and define

∂ : k[z]→ k[z]⊗H4, zn 7→ zn+1 ⊗ y + zn ⊗ 1 + g

2 .

This makes of (k[z], ∂) a right algebraic partial H4-comodule (see [6, Example 3.14]). To
determine k[z] •H4, we compute M ⊗H ⊗ f of (∂ ⊗H)(∂(zn))− (k[z]⊗∆)(∂(zn)) for all
n ≥ 0 and all f ∈ {1∗, g∗, y∗, gy∗}, the dual basis of H4. Up to a non-zero scalar, it results
in the family of elements

U :=
{

zn+1 ⊗ y − zn ⊗ 1− g

2

∣∣∣∣ n ≥ 0
}
⊂ k[x]⊗H4.
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The linear map

ρ : k[z]→ k[z] •H4 = k[z]⊗H4

spankU
, zn 7→ zn ⊗ g,

where by (−) we denote the equivalence class in the quotient, together with the canonical
projection on the quotient π, equip k[z] with a structure of geometric partial comodule
over H4. To compute the globalization of (k[z],k[z] •H4, π, ρ) we have to determine the
equalizer Y of (4). However, after observing that a basis for k[z] •H4 ⊗H4 is given by{

1⊗ y ⊗ a, zn ⊗ b⊗ a
∣∣∣ a ∈ {1, g, y, gy}, b ∈ {1, g, gy}, n ≥ 0

}
,

one can conclude by a direct computation that Y = spank{zn ⊗ g | n ≥ 0} = k[z] ⊗ g
with δ(zn ⊗ g) = (zn ⊗ g) ⊗ g and ϵ : Y → k[z], zn ⊗ g 7→ zn. We point out that any
element p(z) ∈ k[z] determines a one-dimensional geometric partial subcomodule of k[z]
(in accordance with [29, Theorem 2.27]). However, any positive power of z, for example,
generates an infinite-dimensional algebraic partial subcomodule (as observed in [6, Example
3.14]). This nicely highlights the advantages of working with geometric partial comodules
instead of algebraic ones.

4. Hopf partial comodules over bialgebras

Let (B, µ, u, ∆, ε) be a bialgebra over a field k. The category C := ModB of right B-
modules is an abelian monoidal category with tensor product ⊗ = ⊗k and unit object I = k.
Furthermore, (B, ∆, ε) with the regular right B-module structure is a coalgebra in C and
the endofunctor − ⊗ B is continuous. In particular, ComB is complete and ComB → C
preserves limits.

Lemma 4.1. There is a bijective correspondence between:
(1) geometric partial comodules (M, M •B, ρM , πM) over (B, ∆, ε) in C = ModB;
(2) right B-modules M with a geometric partial comodule structure (M, M •B, πM , ρM ) over

(B, ∆, ε) in Vectk such that M •B is a right B-module and ρM and πM are B-linear.

Proof. The conditions of (2) assure that (M, M •B, πM , ρM ) is a partial comodule datum in
ModB. Moreover, since the forgetful functor ModB → Vectk preserves and reflects pushouts,
the counitality and geometric coassociativity conditions in ModB or Vectk are the same. □

This leads to the following definition.

Definition 4.2. A (right) Hopf partial comodule is a quadruple (M, M•B, πM , ρM ) satisfying
the equivalent conditions of Lemma 4.1. A morphism of Hopf partial comodules is a B-linear
map that is at the same time a morphism of geometric partial comodules. We denote the
category of Hopf partial comodules by gHPComB

B.
Similarly one can define left Hopf partial comodules and dually Hopf partial modules,

which have a global B-comodule structure and a partial B-module structure.

Example 4.3. (1) Every right Hopf module over B is a right Hopf partial comodule (these
are the global B-comodules in ModB).
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(2) Every right B-module is a right Hopf partial comodule over B with the trivial partial
comodule structure (see [29, §2.4])

M M ⊗B

M⊗εuuuu
M.

(3) Let V be a vector space and let N be a right B-submodule of V ⊗B. Then the geometric
partial B-comodule induced by the global comodule (V ⊗B, V ⊗∆) on the quotient
(V ⊗B)/N makes of it a Hopf partial comodule.

Global right Hopf modules over a bialgebra B can also be characterized as modules in the
monoidal category of right B-comodules. Even if the category of geometric partial comodules
over B is not monoidal, in general, (see [29, §3.2] and, in particular, [29, Theorem 3.9]), we
may still obtain a similar description in the partial case. Recall from [29, Proposition 3.4]
that we can define an associative tensor product ⊠ of partial comodule data as follows. For
(X, X •B, πX , ρX) and (Y, Y •B, πY , ρY ) two partial comodule data, their tensor product
is given by the outer cospan in the following diagram

X ⊗ Y

ρX⊗ρY ))

X ⊗B ⊗ Y ⊗B
πX⊗πY
uu

µX,Y

))

X ⊗ Y ⊗B

(X •B)⊗ (Y •B)
µ̄ ))

X ⊗ Y ⊗B

πX⊗Yuu
(X ⊗ Y ) •B

��?
?

where µX,Y := (X ⊗ Y ⊗ µ) ◦ (X ⊗ τB,Y ⊗B) and τB,Y (b⊗ y) = y ⊗ b for all y ∈ Y, b ∈ B.
This (see [29, Proposition 3.4]) makes of the category PCDB of partial comodule data over B
a monoidal category with oplax unit (i.e., the unitors lX : X → I⊗X and rX : X → X ⊗ I
are just natural transformations and not natural isomorphisms) in such a way that

ComB //

%%

PCDB

yy
Vectk

is a commutative diagram of monoidal functors. The oplax unit is (k, B, IdB, u).
Note that, in general, even if X and Y are geometric partial comodules, X ⊗ Y is not

necessarily geometric (see [29, page 4125]).
Since the tensor product in PCDB of global B-comodules coincide with the structure of

(geometric) partial comodule datum on their tensor product as global B-comodules (see
[29, Remark 3.10]), the bialgebra B itself becomes a monoid in (PCDB,⊠,k) by considering
u : k→ B and µ : B ⊠ B → B, that is to say,

k
u

��

u

))

B

u⊗B

��
B

u⊗B

��
B

∆ ))
B ⊗B

B ⊗B

and

B ⊗B

µ

��

δB⊗B

++
(B ⊗B)⊗B

µ⊗B
��

(B ⊗B)⊗B

µ⊗B
��

B
∆ ++

B ⊗B

B ⊗B
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where δB⊗B(a⊗ b) = a(1) ⊗ b(1) ⊗ a(2)b(2) for all a, b ∈ B (in Sweedler’s notation).

Proposition 4.4. Let B be a k-bialgebra and let (M, M •B, ρM , πM ) be a geometric partial
comodule over (B, ∆, ε) in Vectk. Then there is a bijective correspondence between:
(1) B-module structures on M turning (M, M •B, πM , ρM ) in a Hopf partial comodule with

the additional property that ker(πM) is a B ⊗B-submodule of M ⊗B;
(2) Actions of (B, B ⊗B, IdB⊗B, ∆) on (M, M •B, πM , ρM) in (PCDB,⊠,k).
In case B is moreover a Hopf algebra, then the additional property in (1) is equivalent to
the fact that the partial comodule datum (M, M • B, πM , ρM) is right equivariant in the
sense of [29, Definition 3.5], which means that ker(πM) is a right B-submodule of M ⊗B
with respect to the free B-action on the right tensorand.

Proof. Let us begin by assuming that we have an associative and unital B-module structure
(µM , µM • B) : M ⊠ B → M in PCDB over C = Vectk (that is, (2)). This means that we
have a commutative diagram

M ⊗B

(c)

µM

��

ρM ⊗∆ ''

M ⊗B ⊗B ⊗B
πM ⊗B⊗B

ww
(M⊗B⊗µ)◦(M⊗τB,B⊗B)

''
(a)

M ⊗B ⊗B

µM ⊗B

��
(b)

(M •B)⊗ (B ⊗B)

µ̄ ''

M ⊗B ⊗B

πM⊗Bww
M

ρM

''

(M ⊗B) •B

��?
?

µM •B

��

M ⊗B

πM

ww
M •B

(22)

where µM : M ⊗ B → M is associative and unital in the classical sense, as an action in
Vectk. In this case we may consider the following composition

µ′
M•B :=

(
M •B ⊗B ⊗B

µ̄−→ (M ⊗B) •B
µM •B−−−→M •B

)
.

The associativity of µM together with the fact that πM ⊗B⊗B⊗B⊗B is an epimorphism
entail that (µM •B) ◦ µ̄ equips M •B with a B ⊗B-module structure. Furthermore, the
commutativity of the following diagram

(M ⊗B)⊗ (B ⊗B)
πM ⊗(B⊗B)

//

(M⊗B⊗µ)◦(M⊗τB,B⊗B)
))

µ′
M⊗B

��

(a)

(M •B)⊗ (B ⊗B)

µ̄uu
µ′

M•B

��

(M ⊗B)⊗B
πM⊗B //

µM ⊗B

uu

(M ⊗B) •B
µM •B

))
M ⊗B πM

//

(b)

M •B
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entails that πM becomes a morphism of B ⊗ B-modules and hence ker(πM) inherits a
B ⊗B-module structure via µ′

M•B. To conclude, notice that the commutativity of

M ⊗B

(c)

ρM ⊗B

))

µM

��

M ⊗B ⊗B

πM ⊗B

uu

M⊗B⊗∆

��

µM⊗B

yy

M •B ⊗B

M•B⊗∆

��

M ⊗B ⊗B ⊗B

(M⊗B⊗µ)◦(M⊗τB,B⊗B)

��

πM ⊗B⊗B

uu
(a)M •B ⊗B ⊗B

µ̄

��

M ⊗B ⊗B

µM ⊗B

��

πM⊗B

uu
(b)M

ρM

))

(M ⊗B) •B

µM •B

��

M ⊗B

πM

uu
M •B

implies that both ρM and πM are morphisms of B-modules in Vectk.
Conversely, assume that (M, M •B, πM , ρM ) is a Hopf partial comodule and that ker(πM )

is a B ⊗B-submodule of M ⊗B with respect to the B ⊗B-module structure

µ′
M⊗B :=

(
M ⊗B ⊗B ⊗B

M⊗τB,B⊗B−−−−−−−→M ⊗B ⊗B ⊗B
µM ⊗µ−−−→M ⊗B ⊗B

)
.

This means that M •B inherits a B ⊗B-module structure µ′
M•B induced by µ′

M⊗B, that is,

M ⊗B ⊗B ⊗B
πM ⊗B⊗B //

(M⊗B⊗µ)◦(M⊗τB,B⊗B)
��

M •B ⊗B ⊗B

µ′
M•B

��
M ⊗B ⊗B

µM ⊗B
// M ⊗B πM

// M •B

(23)

commutes and hence there exists a unique µM •B : (M ⊗B) •B →M •B such that
(µM •B) ◦ µ̄ = µ′

M•B and (µM •B) ◦ πM⊗B = πM ◦ (µM ⊗B). (24)
Notice also that since

µ′
M•B ◦ (M •B ⊗∆) ◦ (πM ⊗B) = µ′

M•B ◦ (πM ⊗B ⊗B) ◦ (M ⊗B ⊗∆)
(23)= πM ◦ (µM ⊗B) ◦ (M ⊗B ⊗ µ) ◦ (M ⊗ τB,B ⊗B) ◦ (M ⊗B ⊗∆)

= πM ◦ µM⊗B
(∗)= µM•B ◦ (πM ⊗B),

where in (∗) we used the fact that πM is right B-linear by hypothesis, then we have
µM•B = µ′

M•B ◦ (M •B ⊗∆) (25)
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because πM ⊗B is an epimorphism. Moreover, since

(µB •B) ◦ µ̄ ◦ (ρM ⊗∆) (24)= µ′
M•B ◦ (ρM ⊗∆) (25)= µM•B ◦ (ρM ⊗B) (∗)= ρM ◦ µM ,

where in (∗) we used the fact that ρM is right B-linear, we have that (22) commutes and so
(µM , µM •B) is an action of (B, B ⊗B, IdB⊗B, µ) on (M, M •B, πM , ρM) in (PCDB,⊠,k).

It is clear that the correspondence between (1) and (2) we just constructed is bijective.
Finally, the last claim follows from the fact that if B is a Hopf algebra with antipode

S, then for every a, b ∈ B we have a ⊗ b = a(1) ⊗ a(2)S
(
a(3)

)
b. Clearly, if ker(πM) is, in

addition, a B⊗B-submodule of M ⊗B, then in particular it is a B-submodule with respect
to the regular right B-action on the right tensorand. Conversely, if ker(πM) is, in addition,
a B-submodule of M ⊗B with respect to multiplication by B on the right tensorand, then∑

i

mi · x⊗ biy =
∑

i

mi · x(1) ⊗ bix(2)S
(
x(3)

)
y ∈ ker(πM)

for all ∑i mi ⊗ bi ∈ ker(πM) and hence it is, in fact, a B ⊗B-submodule of M ⊗B. □

Theorem 4.5. Right Hopf partial comodules over B are globalizable in the sense of
Definition 2.3. That is, gHPComB

B, gl = gHPComB
B.

Proof. It follows directly from Theorem 3.5. □

By combining the globalization theorem with the structure theorem for Hopf modules,
we obtain the following.

Theorem 4.6 (Fundamental Theorem for Hopf partial comodules over a Hopf algebra). Let
H be a Hopf algebra over k. Then the category gHPComH

H is equivalent with the category
whose objects are pairs (V, N) composed by a vector space V and an H-submodule N of
V ⊗H such that (V ⊗∆(H)) ∩ (N ⊗H) = 0, and whose morphisms (V, N)→ (V ′, N ′) are
given by k-linear maps f : V → V ′ such that (f ⊗H)(N) ⊂ N ′.

Proof. By Theorem 4.5, every Hopf partial comodule M is globalizable to a (global)
Hopf module G(M). By applying the structure theorem of Hopf modules, we know that
G(M) ∼= V ⊗H, where V = G(M)coH is the space of coinvariant elements. The description
of partial comodules in Corollary 3.8 tells now that M (as a geometric partial comodule in
Vectk) is a quotient of V ⊗H by a subspace N satisfying (V ⊗∆(H))∩ (N ⊗H) = 0, with
the induced partial comodule structure. Finally, the compatibility between the H-module
and the partial H-comodule structure of M (see Lemma 4.1) assures that N should be an
H-submodule of V ⊗H. □

Corollary 4.7. Let H be a Hopf algebra with antipode S and ϕ : H → k be a morphism
of algebras. Up to isomorphism, the only Hopf partial H-comodule structure on the right
H-module kϕ is the trivial partial comodule structure.

Proof. In a nutshell, the globalization of k should be a non-zero Hopf submodule of
k ⊗ H ∼= H, hence it can only be H and, up to isomorphism, the only induced partial
comodule structure from H to k is the trivial one.
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More precisely, the trivial partial comodule structure on k makes of it a Hopf partial
comodule. Now, assume that (k,k •H, πk, ρk) is another Hopf partial comodule structure
on kϕ. We already know that k is globalizable and its globalization (G(k), ϵk) is of the
form G(k) ∼= G(k)coH ⊗ H. Recall that κ := (ϵk ⊗ H) ◦ δ : G(k) → k ⊗ H should be
a monomorphism of Hopf modules over H and hence κcoH : G(k)coH → k⊗HcoH ∼= k
should be injective, which implies that G(k) ∼= H as Hopf modules over H. Thus, we may
assume that G(k) = H. The canonical morphism ϵk : H → k is uniquely determined by
ϵk(x) = ϵk(1H)ϕ(x) and, being ϵk surjective, ϵk(1H) ̸= 0. Therefore, up to rescaling, we may
also assume that ϵk = ϕ. As a consequence, κ = (ϕ⊗H) ◦∆ and we have a pushout square

Hϕ

uu
(ϕ⊗H)◦∆
))

k
ρk ))

k⊗H
πk
uu

k •H.

��?
?

Next, we observe that (ϕ⊗H) ◦∆ : H → k⊗H, x 7→ 1⊗ ϕ(x(1))x(2), is an isomorphism of
right H-modules with inverse k ⊗H → H, 1 ⊗ x 7→ ϕS(x(1))x(2). As a consequence, also
(k, Idk,k ⊗ ε) is a pushout of (ϕ, (ϕ ⊗H) ◦∆) and so there exists a unique isomorphism
of right B-modules σ : k • H → k such that σ ◦ ρk = Idk and σ ◦ πk = k ⊗ ε. A quick
observation reveals that σ is, in fact, an isomorphism of geometric partial comodules. □

Let us conclude with a couple of concrete examples.
Example 4.8. Let G be a group with neutral element e and let M be a representation of
G over k (that is, a left kG-module). A left kG-Hopf module structure on M is the same
as a G-grading {Mg | g ∈ G} on M such that h ·Mg ⊆ Mhg for all g, h ∈ G. Inspired by
this, we call partially graded G-representations the left Hopf partial comodules over kG.

By applying Theorem 4.6, partially graded G-representations are all and only of the
following form. For a vector space V , consider kG ⊗ V with action h · (g ⊗ v) = hg ⊗ v
and coaction δ(g ⊗ v) = g ⊗ g ⊗ v for all h, g ∈ G, v ∈ V . Now consider a kG-submodule
N ⊆ kG⊗V that does not contain homogeneous elements (that is, such that N∩(g⊗V ) = 0
for all g ∈ G or, equivalently, (∆(kG)⊗ V )∩ (kG⊗N) = 0) and define M := (kG⊗ V )/N .
Then M is a partially graded G-representation with the induced structure

kG⊗ V (kG⊗p)◦(∆⊗V )
))

p

uuuu
M

ρ ))
kG⊗M

π
uuuu

kG •M.

��?
?

Example 4.9. This example shows that if B is a bialgebra which is not a Hopf algebra,
then the conclusion of Corollary 4.7 does not hold. Consider the monoid bialgebra over N,
that is, k[X] with X group-like, and consider the algebra morphism ϕ : k[X]→ k, X 7→ 0,
making of k a k[X]-module. The ideal Xk[X] generated by X is a k[X]-Hopf module
because it is also a subcoalgebra. Therefore, Y := k⊗Xk[X] is a right k[X]-Hopf module
with structures uniquely determined by

(1⊗Xn) ·X = 0 and δ(1⊗Xn) = (1⊗Xn)⊗Xn
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for n ≥ 1. The restriction of k⊗ ε to Y provides a surjective right k[X]-linear morphism
p : Y → k whose kernel is k⊗N where N is the ideal X(X − 1)k[X]. It follows that

k ρk−→ k⊗ k[X]
⟨X(X − 1)⟩

πk←− k⊗ k[X]

where ρk(1) = 1⊗X, is a non-trivial geometric partial comodule structure on k in Modk[X].
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