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Abstract. Let A be a k-algebra over a commutative ring k. By the renowned Tannaka-
Krĕın reconstruction, liftings of the monoidal structure from kM to AM correspond to
bialgebra structures on A and liftings of the closed monoidal structure correspond to Hopf
algebra structures on A. In this paper, we determine conditions on A that correspond to
liftings of the closed structure alone, i.e. without considering the monoidal one, which
lead to the notion of what we call a gabi-algebra. First, we tackle the question from the
general perspective of monads, then we focus on the set-theoretic and the linear setting.
Our main and most surprising result is that a normal gabi-algebra, that is an algebra A
whose category of modules is (associative and unital normal) closed with closed forgetful
functor to kM, is automatically a Hopf algebra (thus justifying our title).
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1. Introduction

The starting point of the present paper is the Tannaka-Krĕın reconstruction theory for
Hopf algebras (or quantum groups), where one aims at reconstructing algebraic structures
and properties of (co)algebras from categorical structures and properties of their categories
of (co)modules. Such reconstruction theorems have been widely studied at different levels
of generality: see e.g. [Sc1, U] for the case of Hopf algebras, [Mj, Sa1] for the case of
coquasi-bialgebras (with preantipode), [Sc2, Sc3] for bialgebroids and Hopf algebroids,
[BFVV] for oplax Hopf algebras, [BLV] for Hopf monads and [V] for an overview.

More precisely, it is well-known that there is a bijective correspondence between bialgebra
structures on an algebra A over a commutative ring k and monoidal structures on its
category of left modules AM which are lifted along the forgetful functor ω : AM → kM,
that is to say, monoidal structures on AM for which ω is a strict monoidal functor (see [P]).
Moreover, the category of modules over a bialgebra A is always a right closed monoidal
category, in the sense that for every left A-module N , the endofunctor −⊗N : AM → AM
has a right adjoint given by AM(.A ⊗ .N, −), where .A ⊗ .N is an A-bimodule with respect
to x · (y ⊗ n) · z = x1yz ⊗ x2 · n for all x, y, z ∈ A and n ∈ N (see e.g. [Sc3]). In fact,
it is also left closed monoidal, meaning that the endofunctor N ⊗ − has a right adjoint
given by AM(.N ⊗ .A, −). Hence, AM is always a closed monoidal category. Remark,
however, that the right closed structure (i.e. the “right internal homs”) in AM differs
in general from that in kM. In fact, the forgetful functor ω lifts not only the monoidal,
but the full right closed monoidal structure if and only if also kM(N, −) (endowed with
some A-module structure) provides a right adjoint to − ⊗ N : AM → AM. If this is the
case, then the two right adjoints are related via the canonical isomorphism induced by
.A ⊗ N → .A ⊗ .N, x ⊗ n 7→ x1 ⊗ x2 · n. For N = A, this map is exactly the so-called
Galois or fusion map of the bialgebra A, whose bijectivity corresponds to the existence of
an antipode for A. This makes it clear why lifting the right closed monoidal structure is
equivalent to having a Hopf algebra structure on A. Furthermore, a similar argument tells
that the left closed structure is lifted along ω if and only if the bialgebra has an opantipode.
Thus, A is a Hopf algebra with bijective antipode if and only if both left and right closure
lift along ω.

It is noteworthy that any one of the earlier mentioned cases of reconstruction theorems
follows the above structure, where first a bialgebra-type structure is obtained from lifting
the monoidal structure and then additional Hopf-like structures arise from closeness or
rigidity of this monoidal structure. However, in this paper, we change perspective and
we focus on closed structures as starting point. Indeed, closed structures on a category
can be defined independently of monoidal ones: see for instance [EK, St2, UVZ]. In a
nutshell, a closed category is a category C together with a distinguished object 1 and a
bifunctor [−, −] : Cop × C → C, which can be understood as the prototype of internal homs,
satisfying suitable compatibilities. From this perspective, we may equally look at kM as a
closed category for which the endofunctor kM(V, −) : kM → kM has a left adjoint for
every object V . Therefore, it is natural to wonder what we can say about an algebra A for
which the category AM of left A-modules is closed (without necessarily being monoidal)
in such a way that the forgetful functor ω : AM → kM is a closed functor, and only after
analyse the case in which also the monoidal structure is lifted.
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Despite being a perfectly natural and relevant question, the closed side of reconstruction
theory seems to have been mostly neglected in the literature so far. This paper is aimed at
filling this apparent gap by studying algebras A over the commutative ring k for which
the forgetful functor ω lifts the closed structure but not necessarily the monoidal one. We
will mainly consider two different levels of strictness: skew- and (unital and associative)
normal-closed structures. In case the endofunctors [X, −] on a closed category C have
left adjoint, which we then suggestively denote as − ⊗ X, then the closed structure is
skew-closed if and only if the associated monoidal product ⊗ is skew-monoidal (see [Sz,
§2]). Unital and associative normality of the closed structure then correspond respectively
to (strong) unitality and associativity of the monoidal product. An important difference
between monoidal and closed structures is that the normality conditions can no longer be
expressed as internal properties in the category C, but they need to be expressed externally
in the category of sets (or in any category over which C is enriched, if one considers other
than Set-enriched categories). This is a first aspect that makes the theory of lifting closed
structures different from the usual Tannaka theory. Indeed, when lifting a monoidal product
together with the associativity and unitality constraints along a faithful functor ω, then
the lifted structure is strong monoidal whenever the initial monoidal structure was. In the
closed case, where normality is an external property, the normality of the lifted structure
is an additional requirement.

It turns out that, for a given k-algebra A, lifting the skew-closed structure from kM to
AM corresponds to the existence of algebra maps δ : A → A⊗Aop and ε : A → k satisfying
appropriate conditions. Namely,

Theorem (Theorem 3.12). Let A be an algebra over a commutative ring k. Then the
closed structure of kM lifts to a skew-closed structure on AM if and only if:
(1) there exists an algebra map ε : A → k and
(2) there exists an algebra map δ : A → A ⊗ Aop, δ(a) = a+ ⊗ a− (summation understood),
such that for all a ∈ A

a+ε(a−) = a

a+a− = ε(a)1A

a++ ⊗ a−+ ⊗ a−−a+− = a+ ⊗ a− ⊗ 1
In this case, A acts on kM(M, V ) as (a.f)(m) = a+f(a−m). ■

We call an algebra satisfying the equivalent conditions of the above Theorem a gabi-
algebra(1) and we show how a quite unexpected source of examples is provided by certain
one-sided Hopf algebras in the sense of [GNT], i.e. bialgebras with a morphism which is
just a one-sided convolution inverse of the identity. In particular, modules over a one-sided
Hopf algebra are skew-closed and monoidal in such a way that the forgetful functor is
closed and monoidal, but they do not form a closed monoidal category. Furthermore,
inspired by the existing structure on the module category of a gabi-algebra and by the

(1) We prefer to keep the origin of the name gabi-algebra somewhat mysterious. Being an algebra with
the same additional structure maps as a bialgebra, although satisfying other compatibility conditions
(in particular, a different coassocativity condition), one could think of it as a “generalized associative
bialgebra”. Another hint, however, might be [Bö1], where the above axioms were given for the first time.
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prevailing examples, we also wonder when a gabi-algebra is a (one-sided) Hopf algebra
and we provide necessary and sufficient conditions in § 5. Our most striking result in this
direction is the following, which justifies the title of the paper in view of [Be].

Theorem (Theorem 5.12). Let A be an algebra. Then there is a bijective correspondence
between normal gabi-algebra structures on A and Hopf algebra structures on A. ■

Concretely, our paper is organized as follows. In § 2 we recall the basics of (skew-)closed
and (skew-)monoidal categories and the duality between them. § 3 is devoted to paving the
way towards gabi-algebras. In § 3.1 and § 3.2 we address the question of lifting a skew-closed
structure in the monadic setting, from a skew-closed category C to the Eilenberg-Moore
category CT of algebras for a monad T on C; they also contain our first main results,
Theorem 3.4 and Proposition 3.7, providing necessary and sufficient conditions for the
lifting. In § 3.3 we take advantage of the generality offered by the monadic perspective to
fully answer the question in the set-theoretic setting and in § 3.4 we apply our machinery
to tackle the linear setting, which is leading to the definition of gabi-algebras. With § 4,
we finally introduce gabi-algebras, we study some elementary properties of them and we
provide a few concrete examples. Finally, in § 5 we address the question of determining
which additional conditions make a gabi-algebra into a Hopf algebra. There is also an
appendix, Appendix A, where we prove a lifting theorem for internal homs fairly more
general than the corresponding part in Theorem 3.4 and that represents, in fact, the core
of the proof of the lifting property in Theorem 3.4.

As a matter of notation, k denotes a fixed commutative ring (unless stated otherwise). If
A is a k-algebra, we denote by 1A (or simply 1) both its unit and the k-linear map k → A
giving the k-algebra structure. The multiplication of A might be denoted by m, · or simple
juxtaposition. For a generic category C, the external hom-set between two objects X, Y is
denoted by C(X, Y ), and the identity morphism of an object X may be denoted by idX or
X. The square brackets [−, −] always denote an internal hom of a given closed structure
and 1 a distinguished object (either the closed or the monoidal unit).

2. Closed and monoidal categories

In this section we review various flavours of closed categories and monoidal categories of
different laxities.

2.1. Left skew-closed categories. First we turn to a suitably lax version of closed
categories, following [St2, UVZ], which has the unquestionable advantage of involving only
conditions internal to C.

Definition 2.1. A (left) skew-closed category is a tuple (C, [−, −], 1, Γ, i, j), where
(a) 1 ∈ C is an object
(b) [−, −] : Cop × C → C is a functor
(c) i : [1, −] ⇒ − is a natural transformation
(d) j : 1 ··−→ [−, −] is a dinatural transformation (see, e.g., [Mc, Chapter IX, §4])
(e) Γ is a family of morphisms ΓX

Y,Z : [Y, Z] → [[X, Y ], [X, Z]] for X, Y, Z objects in C,
which is natural in the lower indices and dinatural in the upper index.
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These data are subject to the following axioms:

1 [1, 1]

1

j1

i1
,

[X, Y ] [[X, X], [X, Y ]]

[X, Y ] [1, [X, Y ]]

ΓX
X,Y

[jX ,[X,Y ]]

i[X,Y ]

1 [Y, Y ]

[[X, Y ], [X, Y ]]

jY

j[X,Y ]
ΓX

Y,Y
,

[X, Y ] [[1, X], [1, Y ]]

[[1, X], Y ]

Γ1
X,Y

[iX ,Y ]
[[1,X],iY ]

[W, X] [[U, W ], [U, X]]

[[[U, V ], [U, W ]], [[U, V ], [U, X]]]

[[V, W ], [V, X]] [[V, W ], [[U, V ], [U, X]]]

ΓU
W,X

ΓV
W,X

Γ[U,V ]
[U,W ],[U,X]

[ΓU
V,W ,[[U,V ],[U,X]]]

[[V,W ],ΓU
V,X ]

A skew-closed category is said to be
(N1) left normal if and only if

ȷ̂X,Y : C(X, Y ) → C(1, [X, Y ]), f 7→ [f, Y ] ◦ jY

is a natural bijection;
(N2) right normal if and only if i is a natural isomorphism;
(N3) associative normal if the canonical morphism

Γ̂U,X,Y,Z :
∫ V ∈C

C(U, [V, Z]) × C(X, [Y, V ]) → C(U, [X, [Y, Z]]),

defined component-wise as

Γ̂U,X,Y,Z(f, g) : U
f // [V, Z]

ΓY
V,Z // [[Y, V ], [Y, Z]]

[g,[Y,Z]]
// [X, [Y, Z]]

for all f ∈ C(U, [V, Z]), g ∈ C(X, [Y, V ]), is a bijection.
A skew-closed category satisfying left and right normality conditions will be called unital
normal. A skew-closed category satisfying all three normality conditions will be called
normal-closed.

Remark 2.2. (1) The adjective left in front of the term skew-closed category in Defini-
tion 2.1 shall be interpreted as the adjective left in left skew-monoidal category (we
recall this notion in Definition 2.8, for the convenience of the unaccustomed reader).
In fact, as we will recall in Theorem 2.12, left skew-closed structures are adjoints to left
skew-monoidal ones and vice-versa. Moreover, under this correspondence, normality
for the skew-closed structure corresponds to normality for the skew-monoidal one.
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Analogously, one could speak about right skew-closed structures and these would be
adjoints to right skew-monoidal ones. The interested reader may refer to [UVZ, §4]
for additional details. Henceforth, and as far as we are concerned, the left-hand side
case would be enough and so we will often omit to specify it.

(2) The term closed category is used in different ways in the literature, for a skew-closed
category satisfying none, some or all of the normality conditions. Following [UVZ], we
agree that the term closed category should be reserved for a skew-closed category that
satisfies all three normality conditions, in light of the duality Theorem 2.12. However,
in order to avoid confusion, we will call such a category “normal-closed” in this paper,
and avoid to speak about “closed category” without any prefix.

(3) In contrast to coherences of monoidal categories, left and associative normality for
skew-closed categories are conditions external to C, in the sense that they involve
the fact that certain functions in the category of sets are bijections. They cannot be
expressed by only using morphisms of C. This fact is the strongest feature of closed
categories and it plays a crucial role in § 5. Already at this stage it can be seen that a
functor that preserves the closed structure, even in a strict way, will not necessarily
preserve the normality conditions, because they are external. ▽

Our main examples of skew-closed categories are the following ones.

Example 2.3. The category Set of sets and functions is skew-closed. The inner hom functor
is given by [A, B] = Set(A, B). The unit object is the unit object of the monoidal structure,
i.e. a fixed one-element set ∗. The natural transformation iA : Set(∗, A) → A is the
isomorphism given by iA(f) = f(∗), and the dinatural transformation jA : ∗ → Set(A, A)
picks out the identity, i.e. jA(∗) = idA. Finally, the transformation ΓA

B,C is given by
post-composition, meaning

ΓA
B,C : Set(B, C) → Set(Set(A, B), Set(A, C)), f 7→ (g 7→ f ◦ g) . △

Example 2.4. Let k be a commutative ring with unit 1. Its category of, say, left modules
kM is skew-closed. The inner hom is given by [M, N ] = kM(M, N), on which k acts as
(k.f)(m) = kf(m). The unit object is k. The natural transformation iM : kM(k, M) → M
is the isomorphism given by iM(f) = f(1). The dinatural transformation jM is again
‘picking out the identity’, i.e. it is the unique k-module map with jM (1) = idM . Lastly, the
transformation ΓM

N,P is again given by post-composition, ΓM
N,P (f) = f ◦ −. △

The categories in Example 2.3 and Example 2.4 are both normal-closed, in fact. The
interested reader may check this directly, but it follows more easily from the fact that they
are closed monoidal (a notion that we will recall shortly in § 2.2), in conjunction with the
forthcoming Theorem 2.12. An example of a non normal-closed category is the following.

Example 2.5. Let k be a commutative ring and R be a (not necessarily commutative)
k-algebra. Consider the category RM of left R-modules. For any M, N ∈ RM, define
[M, N ] = kM(M, N) with the following R-action.

(r.f)(m) = r · f(m)
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for all f ∈ kM(M, N), r ∈ R and m ∈ M . The unit object is given by the regular module
R. The structure maps are given by

iM : kM(R, M) → M, f 7→ f(1R),
jM : R → kM(M, M), r 7→ {m 7→ r · m}

and Γ is again given by post-composition. This is an associative normal but not unital
normal closed structure. Again, the interested reader may check this directly, but it would
be easier to observe that the following chain of bijections

RM(.M, kM(N, .P )) ∼= RM(.M, RM(.R. ⊗ N, .P )) ∼= RM((.R. ⊗ N) ⊗R .M, .P )
∼= RM(.M ⊗ N, .P )

makes it clear that the given skew-closed structure [−, −] corresponds, by adjunction, to
the skew-monoidal structure ⊗ with regular left R-action on the left-hand side tensor
factor, which is an associative normal skew-monoidal structure, but not unital normal (see
the forthcoming Example 2.10). △

Functors between skew-closed categories can be required to preserve the skew-closed
structure in a coherent way. This leads to the following definition.

Definition 2.6. A functor F : C → D between skew-closed categories is closed if there is a
morphism F0 : 1D → F1C and a natural transformation F2(X, Y ) : F [X, Y ]C → [FX, FY ]D
satisfying

1D
F0 //

jF X

��

F1C

F jX

��
[FX, FX]D F [X, X]CF2(X,X)

oo

FX [1D, FX]D
iF Xoo

F [1C, X]C
F2(1C ,X)

//

F iX

OO

[F1C, FX]D

[F0,F X]D

OO

F [X, Y ]C
F ΓZ

X,Y //

F2(X,Y )
��

F [[Z, X]C, [Z, Y ]C]C
F2([Z,X],[Z,Y ])

// [F [Z, X]C, F [Z, Y ]C]D
[id,F2(Z,Y )]
��

[FX, FY ]D
ΓF Z

F X,F Y

// [[FZ, FX]D, [FZ, FY ]D]D [F2(Z,X),id]
// [F [Z, X]C, [FZ, FY ]D]D

If all of these are isomorphisms (identities), then F is called strong (strict) closed.

Example 2.7. The identity functor on a skew-closed category is strict closed. The
composition of closed functors is closed: if F, G are composable closed functors, then FG
is closed with (FG)0 = FG0 ◦ F0 and (FG)2(X, Y ) = F2(GX, GY ) ◦ FG2(X, Y ). △
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2.2. Skew-monoidal categories. The notion of a skew-monoidal category is dual to that
of a skew-closed category, in a sense to be made precise in Theorem 2.12.
Definition 2.8. Following [Sz], a (left) skew-monoidal category is a tuple (C, ⊗, 1, α, λ, ρ)
where C is a category, 1 is an object of C, ⊗ : C × C → C is a functor, and

αX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z) ,

λX : 1 ⊗ X → X , ρX : X → X ⊗ 1 ,
(2.1)

are natural transformations subject to the following axioms:
(W ⊗ (X ⊗ Y )) ⊗ Z

α

**
((W ⊗ X) ⊗ Y ) ⊗ Z

α⊗Z
44

α

��

W ⊗ ((X ⊗ Y ) ⊗ Z)
W ⊗α
��

(W ⊗ X) ⊗ (Y ⊗ Z) α // W ⊗ (X ⊗ (Y ⊗ Z))

X ⊗ Y
ρ //

X⊗ρ ''

(X ⊗ Y ) ⊗ 1

α

��
X ⊗ (Y ⊗ 1)

(1 ⊗ X) ⊗ Y
α //

λ⊗Y
��

1 ⊗ (X ⊗ Y )

λvv
X ⊗ Y

X ⊗ Y
ρ⊗Y // (X ⊗ 1) ⊗ Y

α

��
X ⊗ Y X ⊗ (1 ⊗ Y )

X⊗λ
oo

1
ρ

��
1 ⊗ 1

λ
// 1

A skew-monoidal category is
(1) left normal if and only if λ is an isomorphism,
(2) right normal if and only if ρ is an isomorphism,
(3) associative normal if and only if α is an isomorphism.
A monoidal category is a skew-monoidal category satisfying all three normality conditions.
Remark 2.9. A right skew-monoidal category would be defined similarly, but with all
structure morphisms (2.1) reversed. Since we will be interested mainly in left skew-monoidal
categories, we will often omit to specify it. ▽

Example 2.10. Let k be a commutative ring with unit and let R be a k-algebra. The
category RM of left R-modules is an associative normal skew-monoidal category with
respect to the tensor product ⊗ over k. The left R-module structure on the tensor product
M ⊗ N of two left R-modules is given by the left regular action on the left tensorand:
r · (m ⊗ n) = (r · m) ⊗ n for all r ∈ R, m ∈ M , n ∈ N . The natural transformations are

αM,N,P : (M ⊗ N) ⊗ P
∼=−→ M ⊗ (N ⊗ P ), (m ⊗ n) ⊗ p 7→ m ⊗ (n ⊗ p),

λM : R ⊗ M → M, r ⊗ m 7→ r · m,

ρM : M → M ⊗ R, m 7→ m ⊗ 1R.

(2.2)
△



EVERYBODY KNOWS WHAT A NORMAL GABI-ALGEBRA IS 9

2.3. Skew-closed skew-monoidal categories. Let now C be a skew-closed category,
with the usual notation, and assume that for each X in C there is an adjunction LX ⊣ [X, −].
Denote by coevX and evX the unit and counit of each adjunction. Since [−, −] is a bifunctor,
there is a unique way to assign to each arrow f : X → Y and each object Z of C an arrow
Lf : LXZ → LY Z of C so that (X, Y ) 7→ LXY becomes a bifunctor for which the bijection
C(LXY, Z) ∼= C(Y, [X, Z]) is natural in all three variables (cf. the symmetric version of [Mc,
Theorem IV.7.3]). The action of L on morphisms f : X → Y in the lower index is given by

LfZ : LXZ
LX coevY

Z−−−−−→ LX [Y, LY Z] LX [f,LY Z]−−−−−−→ LX [X, LY Z]
evX

LY Z−−−−→ LY Z .

For later use we record the following property of the adjunctions above (see [Mc, §IX.4,
page 216]).

Lemma 2.11. The evaluations and coevaluations evX and coevX are dinatural in X.

Proof. We show it for the evaluation, the coevaluation being completely analogous. One
computes for f : X → Y

evY
Z ◦Lf [Y, Z] = evY

Z ◦ evX
LY [Y,Z] ◦LX [f, LY [Y, Z]] ◦ LX coevY

[Y,Z]
(∗)= evX

Z ◦LX [f, Z] ◦ LX [Y, evY
Z ] ◦ LX coevY

[Y,Z]
(⋆)= evX

Z ◦LX [f, Z]
using (∗) naturality of evX , and (⋆) one of the triangles of the adjunction LX ⊣ [X, −]. □

Transporting the closed structure through the adjunction imparts on C the structure of
a skew-monoidal category [St2, Proposition 18]. Let us describe here how the structure is
obtained. We have the natural transformation

pX,Y,Z : [LY X, Z]
ΓY

LY X,Z−−−−→ [[Y, LY X], [Y, Z]] [coevY
X ,[Y,Z]]

−−−−−−−→ [X, [Y, Z]] . (2.3)
From this, one constructs the natural transformation

C(LLZY X, V ) ∼−→ C(X, [LZY, V ]) pY,Z,V ◦−−−−−−→ C(X, [Y, [Z, V ]]) ∼−→ C(LZLY X, V ) . (2.4)
Such natural transformations are in bijection with C(LZLY X, LLZY X) by the Yoneda
lemma, and this gives a skew associator αX,Y,Z : LZLY X → LLZY X as the morphism
corresponding to (2.4).

The two skew unitors are obtained from the adjunction as follows. Firstly, λX : LX1 → X
corresponds simply to jX : 1 → [X, X]. For the other, consider the natural transformation

C(L1X, Y ) ∼−→ C(X, [1, Y ]) iY ◦−−−−→ C(X, Y ) , (2.5)
which by the Yoneda lemma gives ρX : X → L1X.

Defining ⊗ by setting − ⊗ X := LX concludes the construction of the skew-monoidal
structure (C, ⊗, 1, α, λ, ρ), and we repeat here the following theorem.

Theorem 2.12 ([UVZ, Theorems 2.10 and 3.8]). Let C be a category with a distinguished
object 1, and functors − ⊗ − : C × C → C and [−, −] : Cop × C → C. Assume that there are
adjunctions − ⊗ X ⊣ [X, −], natural in X ∈ C. Then left skew-monoidal structures (α, λ, ρ)
on (C, ⊗, 1) are in bijection with left skew-closed structures (Γ, j, i) on (C, [−, −], 1).
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Moreover, the left skew-monoidal structure is left/right/associative normal if and only
if the left skew-closed structure is left/right/associative normal. The left skew-monoidal
structure is associative normal if and only if p from (2.3) is a natural isomorphism.

Remark 2.13. (1) Remark that p from (2.3) being a natural isomorphism can be under-
stood as LX being a left inverse for [X, −], as functors between C-enriched categories.

(2) For the sake of clearness, let us provide explicit formulae for the monoidal constraints
obtained from the closed ones under the correspondence of Theorem 2.12. The
associativity constraint αX,Y,Z in C((X ⊗ Y ) ⊗ Z, X ⊗ (Y ⊗ Z)) is given by

αX,Y,Z = evZ
X⊗(Y ⊗Z) ◦

(
evY

[Z,X⊗(Y ⊗Z)] ⊗Z
)

◦
(
([coevZ

Y , [Z, X ⊗ (Y ⊗ Z)]] ⊗ Y ) ⊗ Z
)

◦
(
(ΓZ

Y ⊗Z,X⊗(Y ⊗Z) ⊗ Y ) ⊗ Z
)

◦
(
(coevY ⊗Z

X ⊗Y ) ⊗ Z
)

and it is the unique morphism such that
[Y, [Z, αX,Y,Z ]] ◦ [Y, coevZ

X⊗Y ] ◦ coevY
X

= [coevZ
Y , [Z, X ⊗ (Y ⊗ Z)]] ◦ ΓZ

Y ⊗Z,X⊗(Y ⊗Z) ◦ coevY ⊗Z
X ;

(2.6)

the left-unit constraint λX ∈ C(1 ⊗ X, X) is given by λX = evX
X ◦(jX ⊗ X) and it is

the unique morphism such that

[X, λX ] ◦ coevX
1 = jX ;

the right-unit constraint ρX ∈ C(X, X ⊗ 1) is given by ρX = iX⊗1 ◦ coev1
X . ▽

Definition 2.14. A (left) skew-closed and (left) skew-monoidal category is called (left)
skew-closed skew-monoidal if and only if the skew-closed and the skew-monoidal structure
are dual to one another in the sense of Theorem 2.12. If either, and hence both, structure
satisfies all three normality conditions, this situation is termed a right closed monoidal
category in literature (remark however that the adjective right here has a different meaning
than the left before: it indicates that the left adjoint to [X, −] is given by tensoring on the
right). A monoidal category is closed if all functors X ⊗ − and − ⊗ X have right adjoints
(leading to two, a priori distinct, closed structures).

Example 2.15. The category Set is closed monoidal, the monoidal product being given
by the categorical product. The closed structure (both left and right) is the one in
Example 2.3. △

Example 2.16. Let R be a ring, and consider the category RMR of R-bimodules. This is
a monoidal category under ⊗R, and it is in fact closed monoidal. Indeed, recall that for
bimodules over rings R, S, T , we have the tensor-hom adjunctions

SMT (N, RM(M, P )) ∼= RMT (M ⊗S N, P ) ∼= RMS(M, MT (N, P )) , (2.7)

where the bimodule structures on the hom spaces are of course (sft)(m) = f(ms)t and
(rfs)(n) = rf(sn). Specializing to S = T = R, we obtain the left and right closed monoidal
structures associated to the adjunctions

M ⊗R − ⊣ RM(M, −) and − ⊗RM ⊣ MR(M, −)
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of endofunctors on RMR. Note that the two internal homs are in general not isomorphic.
For later use, let us record that the evaluations and coevaluations for the left closed
monoidal structure are

evM
N : M ⊗R RM(M, N) → N, m ⊗R f 7→ f(m), and

coevM
N : N → RM(M, M ⊗R N), n 7→ (m 7→ m ⊗R n) .

The corresponding right versions are completely analogous.
If R = k is commutative, then the category of e.g. left modules kM is closed monoidal

as well. This is facilitated by first embedding kM into kMk (as usual, a right action on
M ∈ kM is defined by mr = rm), then performing the relevant operations there, and
finally forgetting back to kM. Note that in this case, M ⊗ N ∼= N ⊗ M canonically,
and hence the left internal hom and the right internal hom agree. We obtain the closed
structure from Example 2.4. The same can be done for right k-modules. △

3. Towards Gabi-algebras

In this section, C is at least a skew-closed category. Let T ∈ End(C) be a monad on C.

3.1. Lifting to Eilenberg-Moore categories. We wish to lift the skew-closed structure
of C to the Eilenberg-Moore category CT . Thus we need to find a functor [−, −]T : (CT )op ×
CT → CT , and natural transformations iT , jT , ΓT , forming a skew-closed structure on CT

and such that the forgetful functor UT : CT → C is strictly closed. Then, iT = i, jT = j,
ΓT = Γ. Thus, right normality of C is immediately transferred to CT , while this does not
necessarily have to be the case for the other two normality conditions.

We invoke the theorem for mixed liftings, Theorem A.2, to obtain the following.

Lemma 3.1 (Corollary A.4). Let C be a category, [−, −] : Cop × C → C a functor, and
(T, m, u) be a monad on C. The liftings of [−, −] to CT are in bijective correspondence with
natural transformations sX,Y : T [TX, Y ] → [X, TY ] satisfying

sX,Y ◦ u[T X,Y ] = [uX , uY ], (3.1)
sX,Y ◦ m[T X,Y ] = [X, mY ] ◦ sX,T Y ◦ TsT X,Y ◦ T 2[mX , Y ] (3.2)

for all X, Y ∈ C.

We call the conditions (3.1) and (3.2) on s unitality and multiplicativity, respectively.
Let us make explicit the bijection alluded to in Lemma 3.1. Let first [−, −]T be a lifting

of [−, −]. For all (M, µM ), (N, µN ) ∈ CT , we then in particular have that the object [M, N ]
is equipped with a some action of T that we denote by µM ⋆ µN : T [M, N ] → [M, N ]. We
can thus define a natural transformation as above via

T [TX, Y ] T [T X,uY ]−−−−−→ T [TX, TY ] µX⋆µY−−−−→ [TX, TY ] [uX ,Y ]−−−−→ [X, TY ] ,

where X, Y ∈ C. Conversely, given a natural transformation sX,Y : T [TX, Y ] → [X, TY ],
we can define an action µ ⋆ σ via

T [M, N ] T [µM ,N ]−−−−−→ T [TM, N ] sM,N−−−→ [M, TN ] [M,µN ]−−−−→ [M, N ] ,

where now of course (M, µM), (N, µN) ∈ CT .
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Example 3.2. Let T be a Hopf monad on the left closed monoidal category C (in the
sense of [BLV, §3.1]). Then T admits a left antipode, which is a natural transformation
sX,Y : T [TX, Y ] → [X, TY ] satisfying some conditions only valid in the closed monoidal
setting [BLV, §3.3]. However, by [BLV, Proposition 3.8], the antipode is an example of a
natural transformation as in Lemma 3.1, which therefore may be seen as a generalization
of the antipode to the closed but non-monoidal setting. △

Remark 3.3. The interested reader may check that there is a bijective correspondence
between natural transformations sX,Y : T [TX, Y ] → [X, TY ] for X, Y in C and natural
transformations γM

Y : T [M, Y ] → [M, TY ] for Y in C and (M, µM) in CT . Indeed, given s
we can consider

γ(s)M
Y : T [M, Y ] T [µM ,Y ]−−−−−→ T [TM, Y ] sM,Y−−−→ [M, TY ].

In the opposite direction, given γ we can consider

s(γ)X,Y : T [TX, Y ] γT X
Y−−→ [TX, TY ] [uX ,T Y ]−−−−→ [X, TY ].

These two constructions are well-defined and each others inverses. Furthermore, s satisfies
(3.1) if and only if γ satisfies

γM
Y ◦ u[M,Y ] = [M, uY ] (3.3)

and s satisfies (3.2) if and only if γ satisfies

[M, mY ] ◦ γM
T Y ◦ T (γM

Y ) = γM
Y ◦ m[M,Y ]. (3.4)

The T -algebra structure on [M, N ] by means of γ is given by

T [M, N ] γM
N−−→ [M, TN ] [M,µN ]−−−−→ [M, N ]

for all (M, µM), (N, µN) in CT .
The fact that for any (M, µM) there exists γM

Y natural in Y and satisfying (3.3) and
(3.4) is equivalent to require that there exists a functor [(M, µM), −]T : CT → CT such
that ω[(M, µM), −]T = [M, ω(−)]. Naturality of γ in M is equivalent to the fact that
the assignment (CT )op → Funct(CT , CT ), (M, µM ) 7→ [(M, µM ), −]T , is functorial. See [LS2,
§2.1], or [Bö2, Theorems 2.27 and 2.30] for a more elementary approach. ▽

In order to obtain a lifting of the entire skew-closed structure, one now simply needs to
require two things: the existence of some T -algebra structure T1 → 1 on 1 and that the
structural morphisms i, j, Γ of C are intertwiners of the T -algebra structures granted by
the lifting [−, −]T of the bifunctor [−, −]. The following theorem collects necessary and
sufficient conditions for the skew-closed structure to lift.

Theorem 3.4. Let T be a monad on the left skew-closed category C. Then CT is left
skew-closed such that the forgetful functor to C is strictly closed if and only if:
(1) there is a morphism µ1 : T1 → 1 such that (1, µ1) ∈ CT ,
(2) T lifts [−, −] via a natural transformation s : T [T−, ∼] ⇒ [−, T∼] as in Lemma 3.1,
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and they satisfy

TiX = iT X ◦ s1,X ◦ T [µ1, X], ∀ X ∈ C, (3.5)
jM ◦ µ1 = [M, µM ◦ mM ] ◦ sM,T M ◦ TjT M , ∀ (M, µM) ∈ CT , (3.6)

and for all X, Y ∈ C and (P, µP ) ∈ CT

ΓP
X,T Y ◦ sX,Y = [[µP , X], sP,Y ] ◦ s[T P,X],[T P,Y ] ◦ T [sP,X , [µP , Y ]] ◦ TΓP

T X,Y . (3.7)

Proof. Let us prove the necessity part. Suppose that iM is a morphism of T -algebras for
any (M, µM) in CT . Then, given any X in C, in the following diagram

T [T1, X]

(a)T [T 1,uX ]

��

T [1, X]

(b)

T [µ1,X]
oo

T [1,uX ]

��

T iX // TX

T uX

��
idT X

��

T [T1, TX]

s1,T X

��

(c)

T [1, TX]

µ[1,T X]

��

(d)

T [µ1,T X]
oo

T iT X

// T 2X

µT X

��
[1, T 2X]

[1,µT X ]
// [1, TX]

iT X

// TX

(a) commutes by bifunctoriality of [−, −], (b) commutes by naturality of i, (c) commutes by
definition of µ[1,M ] and (d) commutes by hypothesis. The right-most relation follows from
the fact that µT X = mX . Since, moreover, s is natural in both entries, s1,T X ◦ T [T1, uX ] =
[1, TuX ] ◦ s1,X , whence

TiX = iT X ◦ [1, µT X ◦ TuX ] ◦ s1,X ◦ T [µ1, X] = iT X ◦ s1,X ◦ T [µ1, X]

Now, suppose that jM is a morphism of T -algebras for every (M, µM ) in CT . This entails
that the following diagram commutes for every (M, µM) in CT

T [TM, TM ]

T [T M,µM ]

&&

sM,T M //

(a)

[M, T 2M ]

[M,T µM ]

��

(b)

T1

(c)

T jM

//

µ1

��

T jT M

::

T [M, M ]

(d)µ[M,M ]

��

T [µM ,M ]
// T [TM, M ]

sM,M

��
1

jM

// [M, M ] [M, TM ]
[M,µM ]

oo

since (a) commutes by dinaturality of j, (b) commutes by naturality of s, (c) commutes by
hypothesis and (d) commutes by definition of µ[M,M ]. That is,

jM ◦ µ1 = [M, µM ◦ TµM ] ◦ sM,T M ◦ TjT M = [M, µM ◦ mM ] ◦ sM,T M ◦ TjT M .
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Finally, suppose that ΓP
M,N is a morphism of T -algebras for all (M, µM ), (N, µN ), (P, µP )

in CT . This entails that the following diagram commutes for all (M, µM ), (N, µN ), (P, µP )
in CT

T [TM, N ]

(a)

sM,N

��

T ΓP
T M,N // T [[P, TM ], [P, N ]]

(b)

T [sP,M ,[P,N ]]// T [T [TP, M ], [P, N ]]

T [T [µP ,M ],[P,N ]]

��

T [T [T P,M ],[µP ,N ]]

##
T [M, N ]

(c)

T ΓP
M,N //

µ[M,N]

��

T [µM ,N ]

OO

T [[P, M ], [P, N ]]

(d)

T [[P,µM ],[P,N ]]

OO

µ[[P,M],[P,N]]

��

T [µ[P,M],[P,N ]]
// T [T [P, M ], [P, N ]]

(g)s[P,M],[P,N]

��

T [T [TP, M ], [TP, N ]]

s[T P,M],[T P,N]

��
[M, N ]

(e)

ΓP
M,N

// [[P, M ], [P, N ]]

(f)

[[P, M ], T [P, N ]]
[[P,M ],µ[P,N]]
oo

[[P,M ],T [µP ,N ]]

��

[[TP, M ], T [TP, N ]]

[[µP ,M ],T [T P,N ]]

rr
[M, TN ]

ΓP
M,T N

//

[M,µN ]

OO

[[P, M ], [P, TN ]]

[[P,M ],[P,µN ]]

OO

[[P, M ], T [TP, N ]]
[[P,M ],sP,N ]
oo

since (a) and (e) commute by naturality of Γ, the left-most bended diagram, (b), (d) and
(f) commute by definition of µ[M,N ], (c) commutes by hypothesis, and (g) commutes by
naturality of s. As a consequence,

ΓP
M,T Y ◦ sM,Y ◦ T [µM , Y ]

= [[P, M ], [P, µT Y ◦ TuY ]] ◦ ΓP
M,T Y ◦ sM,Y ◦ T [µM , Y ]

(⋆)= [[P, M ], [P, µT Y ]] ◦ ΓP
M,T 2Y ◦ sM,T Y ◦ T [µM , TY ] ◦ T [M, uY ]

(∗)= [[P, M ], [P, µT Y ]] ◦ [[µP , M ], sP,T Y ] ◦ s[T P,M ],[T P,T Y ] ◦ T [sP,M , [µP , TY ]] ◦
◦ TΓP

T M,T Y ◦ T [µM , TY ] ◦ T [M, uY ]
(⋆)= [[P, M ], [P, µT Y ◦ TuY ]] ◦ [[µP , M ], sP,Y ] ◦ s[T P,M ],[T P,Y ] ◦ T [sP,M , [µP , Y ]] ◦

◦ TΓP
T M,Y ◦ T [µM , Y ]

= [[µP , M ], sP,Y ] ◦ s[T P,M ],[T P,Y ] ◦ T [sP,M , [µP , Y ]] ◦ TΓP
T M,Y ◦ T [µM , Y ]

where (⋆) follow from the naturality of Γ and s and (∗) is the commutativity of the diagram
above with N = TY . Therefore

ΓP
X,T Y ◦ sX,Y

= ΓP
X,T Y ◦ sX,Y ◦ T [µT X ◦ TuX , Y ]

(⋆)= [[P, uX ], [P, TY ]] ◦ ΓP
T X,T Y ◦ sT X,Y ◦ T [µT X , Y ]

(∗)= [[P, uX ], [P, TY ]] ◦ [[µP , TX], sP,Y ] ◦ s[T P,T X],[T P,Y ] ◦
◦ T [sP,T X , [µP , Y ]] ◦ TΓP

T 2X,Y ◦ T [µT X , Y ]
(⋆)= [[µP , X], sP,Y ] ◦ s[T P,X],[T P,Y ] ◦ T [sP,X , [µP , Y ]] ◦ TΓP

T X,Y ◦ T [µT X ◦ TuX , Y ]
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= [[µP , X], sP,Y ] ◦ s[T P,X],[T P,Y ] ◦ T [sP,X , [µP , Y ]] ◦ TΓP
T X,Y

for all X, Y in C, by the naturality of the maps involved (to be used in (⋆)), by the equality
above (to be used in (∗)) and because µT X = mX .

To conclude, a close inspection of the diagrams above shall convince the reader that the
three conditions are also sufficient. □

Remark 3.5. Continuing Remark 3.3, a technical but otherwise straightforward check
reveals that s satisfies (3.5), (3.6) and (3.7) if and only if γ satisfies

TiX = iT X ◦ γ1
X , (3.8)

jM ◦ µ1 = [M, µM ] ◦ γM
M ◦ TjM , (3.9)

and
ΓP

T X,T Y ◦ γT X
Y = [[P, TX], γP

Y ] ◦ γ
[P,T X]
[P,Y ] ◦ TΓP

T X,Y , (3.10)

respectively, for all (M, µM), (P, µP ) in CT and all X, Y in C.
It is worth noticing that in [W] (see also the recent [St3]) the author studies a related

question to the one studied in this section. More precisely, in [W] a closed comonad G
on a closed category C is considered, and sufficient and necessary conditions are given
for G such that the Eilenberg-Moore category CG is closed and the forgetful functor is
strict closed. The difference with our approach is twofold. Firstly, even if a monad on a
category C encodes the same data as a comonad on Cop, a closed structure on a category
C does not necessarily induce a closed structure on Cop. Therefore, one cannot directly
derive results in the setting of monads on closed categories from results in the setting of
comonads on closed categories, or vice versa. Nevertheless, it should be possible to use
a similar approach as the one from [W] (or the one from this paper) in a dual setting,
in order to be able to compare both. A more fundamental difference however is that, in
contrast to [W], we do not assume the monad to be closed. The main ingredient in the
characterization of [W], called the Wood fusion morphism in [St3], is a morphism that
exactly looks as an inverse to the transformation γM from Remark 3.3. One could wonder
if the compatibility conditions that are required on our γM as listed in this remark are
related to, or even can be deduced from, those for a Wood fusion morphism associated to
a closed monad (dualizing the results from [W]). ▽

3.2. The skew-closed skew-monoidal setting. Let now C be, in addition, left skew-
closed skew-monoidal. To help spell out the intertwining condition in the examples, we
employ the skew-closed skew-monoidal structure and we denote by LX the left adjoint of
[X, −]. The adjunction establishes a bijection between natural transformations T [TX, −] ⇒
[X, T−] and natural transformations LXT− ⇒ TLT X−. Explicitly, the latter sends a
natural transformation sX,Y : T [TX, Y ] → [X, TY ] to tY,X : LXTY → TLT XY given by

LXTY
LXT coevT X

Y−−−−−−−→ LXT [TX, LT XY ]
LXsX,LT X Y−−−−−−−→ LX [X, TLT XY ]

evX
T LT X Y−−−−−→ TLT XY .

(3.11)
This yields a natural transformation L−(T (∼)) ⇒ T (LT −(∼)) between bifunctors, which we
shall call the mate of s. For the sake of completeness, if we are given tY,X : LXTY → TLT XY
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then the natural transformation sX,Y : T [TX, Y ] → [X, TY ] is given by

T [TX, Y ]
coevX

T [T X,Y ]−−−−−−−→
[
X, LXT [TX, Y ]

] [X,t[T X,Y ],X ]
−−−−−−−→

[
X, TLT X [TX, Y ]

] [X,T evT X
Y ]

−−−−−−→ [X, TY ].

Remark 3.6. For every object X in C,

t−,X :

C T //

LT X

��

C

LX

��
C

T
// C

⇓ is indeed the mate of sX,− :

C T // C

C
T
//

[T X,−]

OO

C

[X,−]

OO

⇓

in the categorical sense; one would just need to adapt the definition of a mate as in [L,
§6.1, page 186] to fit the setting of [Mc, Chapter IV, §7, page 98]. Thus, our “parametrized”
version of the terminology is justified. ▽

Notice that tX,Y ∈ C
(
LY TX, T (LT Y X)

)
is the unique morphism such that

[Y, tX,Y ] ◦ coevY
T X = sY,LT Y X ◦ T

(
coevT Y

X

)
. (3.12)

Now, recall from Remark 2.13(2) the definitions of α, λ, ρ in terms of i, j, Γ. The
properties of s translate to the mate in the following way.

Proposition 3.7. Let sX,Y : T [TX, Y ] → [X, TY ] be natural, and let t be its mate. Then
(1) s is unital, i.e. satisfies (3.1), if and only if t satisfies

tX,Y ◦ LY uX = uLT Y X ◦ LuY
X (3.13)

for all X, Y in C;
(2) s is multiplicative, i.e. satisfies (3.2), if and only if t satisfies

tX,Y ◦ LY mX = T (LmY
X) ◦ mLT 2Y X ◦ TtX,T Y ◦ tT X,Y (3.14)

for all X, Y in C;
(3) s satisfies (3.5) if and only if t satisfies

TLµ1X ◦ tX,1 ◦ ρT X = TρX (3.15)

for all X in C;
(4) s satisfies (3.6) if and only if t satisfies

λM ◦ LMµ1 = µM ◦ mM ◦ T (λT M) ◦ t1,M (3.16)

for all (M, µM) in CT ;
(5) s satisfies (3.7) if and only if t satisfies

tX,LM Y ◦ αT X,Y,M = T
(

L
T

(
L

µ
(2)
M

Y

)X
)

◦ T
(
LtY,T M

X
)

◦ T (αX,T Y,T M) ◦ tLT Y X,M ◦ LM tX,Y

(3.17)
for all X, Y in C and all (M, µM) in CT , where µ

(2)
M denotes µM ◦ mM = µM ◦ TµM .
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Proof. The proof is a technical but otherwise straightforward exercise. The dinaturality
(see Lemma 2.11) of coevX and evX is to be used.

Nevertheless, since Claim (5) is not elementary, let us sketch the underlying argument
for the benefit of the reader. First of all, in view of the bijection

C
(
LP L[P,X](T [TX, Y ]), TY

) ∼= C
(
T [TX, Y ], [[P, X], [P, TY ]]

)
there exists a unique morphism F on the left such that

[[P, X], [P, F ]] ◦ [[P, X], coevP
L[P,X]T [T X,Y ]] ◦ coev[P,X]

T [T X,Y ] = ΓP
X,T Y ◦ sX,Y

and we claim that
F = T (evT X

Y ) ◦ T
(
LT (evP

X)[TX, Y ]
)

◦ t[T X,Y ],LP [P,X] ◦ αT [T X,Y ],[P,X],P .

We check this by direct computation:
[[P, X], [P, T (evT X

Y )]] ◦ [[P, X], [P, T (LT (evP
X)[TX, Y ])]] ◦ [[P, X], [P, t[T X,Y ],LP [P,X]]] ◦

◦ [[P, X], [P, αT [T X,Y ],[P,X],P ]] ◦ [[P, X], coevP
L[P,X]T [T X,Y ]] ◦ coev[P,X]

T [T X,Y ] =
(2.6)= [[P, X], [P, T (evT X

Y )]] ◦ [[P, X], [P, T (LT (evP
X)[TX, Y ])]] ◦ [[P, X], [P, t[T X,Y ],LP [P,X]]] ◦

◦ [coevP
[P,X], [P, LLP ([P,X])T [TX, Y ]]] ◦ ΓP

LP ([P,X]),LLP ([P,X])T [T X,Y ] ◦ coevLP ([P,X])
T [T X,Y ]

(∗)= [coevP
[P,X], [P, TY ]] ◦ ΓP

LP ([P,X]),T Y ◦ [LP ([P, X]), T (evT X
Y )] ◦

◦ [LP ([P, X]), T (LT (evP
X)[TX, Y ])] ◦ [LP [P, X], t[T X,Y ],LP [P,X]] ◦ coevLP ([P,X])

T [T X,Y ]
(3.12)= [coevP

[P,X], [P, TY ]] ◦ ΓP
LP ([P,X]),T Y ◦ [LP ([P, X]), T (evT X

Y )] ◦

◦ [LP ([P, X]), T (LT (evP
X)[TX, Y ])] ◦ sLP ([P,X]),LT (LP ([P,X]))[T X,Y ] ◦ T

(
coevT (LP ([P,X]))

[T X,Y ]

)
(∗)= [coevP

[P,X], [P, TY ]] ◦ ΓP
LP ([P,X]),T Y ◦ sLP ([P,X]),Y ◦ T

[
T
(
LP ([P, X])

)
, evT X

Y

]
◦

◦ T
[
T
(
LP ([P, X])

)
, LT (evP

X)[TX, Y ]
]

◦ T
(
coevT (LP ([P,X]))

[T X,Y ]

)
(⋆)= [coevP

[P,X], [P, TY ]] ◦ ΓP
LP ([P,X]),T Y ◦ sLP ([P,X]),Y ◦ T

[
T
(
LP ([P, X])

)
, evT (LP [P,X])

Y

]
◦

◦ T
[
T
(
LP ([P, X])

)
, LT (LP [P,X])[T (evP

X), Y ]
]

◦ T
(
coevT (LP ([P,X]))

[T X,Y ]

)
(∗)= [coevP

[P,X], [P, TY ]] ◦ ΓP
LP ([P,X]),T Y ◦ sLP ([P,X]),Y ◦ T

[
T
(
LP ([P, X])

)
, evT (LP [P,X])

Y

]
◦

◦ T
(
coevT (LP ([P,X]))

[T (LP [P,X]),Y ]

)
◦ T

[
T (evP

X), Y
]

= [coevP
[P,X], [P, TY ]] ◦ ΓP

LP ([P,X]),T Y ◦ sLP ([P,X]),Y ◦ T
[
T (evP

X), Y
]

(∗)= [coevP
[P,X], [P, TY ]] ◦

[
[P, evP

X ], [P, TY ]
]

◦ ΓP
X,T Y ◦ sX,Y = ΓP

X,T Y ◦ sX,Y

where (∗) follow by naturality of the morphisms involved and (⋆) by dinaturality of ev.
Similarly, one can check that the unique morphism G such that

[[P, X], [P, G]] ◦ [[P, X], coevP
L[P,X]T [T X,Y ]] ◦ coev[P,X]

T [T X,Y ]

= [[µP , X], sP,Y ] ◦ s[T P,X],[T P,Y ] ◦ T [sP,X , [µP , Y ]] ◦ TΓP
T X,Y
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is

G = T (evT X
Y ) ◦ T

(
LT (evP

X)[TX, Y ]
)

◦ T
(

L
T

(
L

µ
(2)
P

[P,X]
)[TX, Y ]

)
◦ T

(
Lt[P,X],T P

[TX, Y ]
)

◦

◦ T
(
α[T X,Y ],T [P,X],T P

)
◦ tLT [P,X][T X,Y ],P ◦ LP

(
t[T X,Y ],[P,X]

)
.

Therefore, since s satisfies (3.7), we have F = G. That is,

T (evT X
Y ) ◦ T

(
LT (evP

X)[TX, Y ]
)

◦ t[T X,Y ],LP [P,X] ◦ αT [T X,Y ],[P,X],P

= T (evT X
Y ) ◦ T

(
LT (evP

X)[TX, Y ]
)

◦ T
(

L
T

(
L

µ
(2)
P

[P,X]
)[TX, Y ]

)
◦ T

(
Lt[P,X],T P

[TX, Y ]
)

◦

◦ T
(
α[T X,Y ],T [P,X],T P

)
◦ tLT [P,X][T X,Y ],P ◦ LP

(
t[T X,Y ],[P,X]

)
(3.18)

for every X, Y in C, (P, µP ) in CT . Now,
tX,LM Y ◦ αT X,Y,M

(∗)= T
(

evT LM Y
LT LM Y X

)
◦ t[T LM Y,LLM Y X],LM Y ◦ αT [T LM Y,LT LM Y X],Y,M ◦ LM LY T coevT LM Y

X

(∗)= T
(

evT LM Y
LT LM Y X

)
◦ T
(
LT (evM

LM Y
)[T LM Y, LT LM Y X]

)
◦ t[T LM Y,LT LM Y X],LM [M,LM Y ] ◦

◦ αT [T LM Y,LT LM Y X],[M,LM Y ],M ◦ LM LcoevM
Y

T [T (LM Y ), LT LM Y X] ◦ LM LY T coevT LM Y
X

(3.18)= T
(

evT LM Y
LT LM Y X

)
◦ T
(
LT (evM

LM Y
)[T LM Y, LT LM Y X]

)
◦

◦ T
(

L
T

(
L

µ
(2)
M

[M,LM Y ]
)[T LM Y, LT LM Y X]

)
◦ T
(
Lt[M,LM Y ],T M

[T LM Y, LT LM Y X]
)

◦

◦ T
(

α[T LM Y,LT LM Y X],T [M,LM Y ],T M

)
◦ tLT [M,LM Y ][T LM Y,LT LM Y X],M ◦

◦ LM

(
t[T LM Y,LT LM Y X],[M,LM Y ]

)
◦ LM LcoevM

Y
T [T (LM Y ), LT LM Y X] ◦ LM LY T coevT LM Y

X

(∗)= T
(

evT LM Y
LT LM Y X

)
◦ T
(

L
T

(
L

µ
(2)
M

Y

)[T LM Y, LT LM Y X]
)

◦ T
(
LtY,T M [T LM Y, LT LM Y X]

)
◦

◦ T
(

α[T LM Y,LT LM Y X],T Y,T M

)
◦ tLT Y [T LM Y,LT LM Y X],M ◦ LM

(
t[T LM Y,LT LM Y X],Y

)
◦ LM LY T coevT LM Y

X

(∗)= T
(

L
T

(
L

µ
(2)
M

Y

)X) ◦ T
(
LtY,T M X

)
◦ T (αX,T Y,T M ) ◦ tLT Y X,M ◦ LM (tX,Y ) ,

where (∗) follow by naturality and the triangles of the adjunction LX ⊣ [X, −] (i.e., the
snake identities for ev and coev). We leave to the interested reader to check that also the
other implication holds. □

Remark 3.8. Let us take advantage of the convention X ⊗ Y := LY (X) as we did in § 2.3.
Then tX,Y : TX ⊗ Y → T (X ⊗ TY ). With this notation, (3.13) becomes

tX,Y ◦ (uX ⊗ Y ) = uX⊗T Y ◦ (X ⊗ uY ) (3.19)

and (3.14) becomes

tX,Y ◦ (mX ⊗ Y ) = T (X ⊗ mY ) ◦ mX⊗T 2Y ◦ TtX,T Y ◦ tT X,Y . (3.20)
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Analogously, (3.15), (3.16) and (3.17) become

T (X ⊗ µ1) ◦ tX,1 ◦ ρT X = TρX , (3.21)
λM ◦ (µ1 ⊗ M) = µM ◦ mM ◦ T (λT M) ◦ t1,M , (3.22)

tX,Y ⊗M ◦ αT X,Y,M = T
(
X ⊗ T (Y ⊗ µ

(2)
M )

)
◦ T (X ⊗ tY,T M) ◦ T (αX,T Y,T M)

◦ tX⊗T Y,M ◦ (tX,Y ⊗ M)
(3.23)

respectively, for all X, Y in C and (M, µM) in CT and where µ
(2)
M denotes µM ◦ mM =

µM ◦ TµM . ▽

Let us now write the action of T on [−, −] in terms of t, for later use. To this end, recall
that given T -algebras (M, µM) and (N, µN), the object [M, N ] becomes a T -algebra with
action µM ⋆ µN = [M, µN ] ◦ sM,N ◦ T [µM , N ]. In terms of t, one finds that the T -algebra
structure is the composition

T [M, N ]
µ[M,N ]

��

coevM
T [M,N ] // [M, LMT [M, N ]]

[M,t[M,N ],M ]
// [M, TLT M [M, N ]]

[M,T LµM
[M,N ]]

��
[M, N ] [M, TN ]

[M,µN ]
oo [M, TLM [M, N ]] .

[M,T evM
N ]

oo

(3.24)

Remark 3.9. Continuing Remark 3.5, the mate τ of γ (and in this case τM is exactly
the mate of γM in the sense of [L, §6.1, page 186], for every M in CT ) is the natural
transformation τM

X : LMT (X) → TLM(X) given by

LMT (X) LM T coevM
X−−−−−−−→ LMT [M, LM(X)]

LM γM
LM (X)−−−−−−→ LM [M, TLM(X)]

evM
T LM (X)−−−−−−→ TLM(X).

The natural transformation γ satisfies (3.3) and (3.4) if and only if τ satisfies

τM
X ◦ (uX ⊗ M) = uX⊗M and τM

X ◦ (mX ⊗ M) = mX⊗M ◦ TτM
X ◦ τM

T X ,

respectively. In terms of τ , the T -algebra structure on [M, N ] looks like

T [M, N ]

µ[M,N ]

��

coevM
T [M,N ] // [M, T [M, N ] ⊗ M ]

[M,τM
[M,N ]]��

[M, T ([M, N ] ⊗ M)]
[M,T (evM

N )]
��

[M, N ] [M, TN ]
[M,µN ]

oo

(by replacing τ with its definition, we find the action via γ). It follows that γ satisfies (3.8)
and (3.9) if and only if τ satisfies

TρX = τ1
X ◦ ρT X ,

λM ◦ (µ1 ⊗ M) = µM ◦ TλM ◦ τ1
M ,
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respectively. Furthermore, γ satisfies (3.10) if and only if τ satisfies

τ
T (Y ⊗M)
X ◦

(
TX ⊗ τM

Y

)
◦ αT X,T Y,M = T

(
X ⊗ τM

Y

)
◦ T

(
αX,T Y,M

)
◦ τM

X⊗T Y ◦
(
τT Y

X ⊗ M
)

for all X, Y in C and (M, µM) in CT . ▽

Example 3.10. Let T be a left Hopf monad on the closed monoidal category C, with left
fusion operator H l

A,B : T (A ⊗ TB) → TA ⊗ TB. Choose LX = − ⊗ X. Then the natural
transformation defined as the composition

tA,B : LBTA = TA ⊗ B
T A⊗uB−−−−→ TA ⊗ TB

(Hl)−1
A,B−−−−→ T (A ⊗ TB) = TLT BA

satisfies unitality (3.13) and multiplicativity (3.14) as in Proposition 3.7. This can be seen
from the formulas in [BLV, Propositions 3.8 and 3.9]. We can re-express (H l)−1

A,B in terms
of t as the composition

TA ⊗ TB
tA,T B−−−→ T (A ⊗ T 2B) T (A⊗mB)−−−−−−→ T (A ⊗ TB) .

This observation implicitly appeared in [BLV, Proposition 3.9]. △

3.3. Set-theoretic solutions. We continue Example 2.3, the cartesian closed category
Set. As we are used to, take LX := − × X. Let M be an algebra in Set, i.e. a monoid, and
consider the monad T = M × −. We write multiplication in M by juxtaposition, the unit
is 1. The action of M on an M -set U will be denoted by M × U → U, (m, u) 7→ m.u.

Since an element in a set S is the same thing as function ∗ → S from the point, a natural
transformation tX,Y : (M × X) × Y → M × (X × (M × Y )) as in (3.11) is completely
determined by its value t∗,∗. Thus, such a natural transformation is completely determined
by a function δ : M → M × M , m 7→ (m+, m−), via tX,Y (m, x, y) = (m+, x, m−, y).

Unitality of t means that

(1+, x, 1−, y) =
(
tX,Y ◦ (uX × Y )

)
(x, y)(3.19)=

(
uX×M×Y ◦ (X × uY )

)
(x, y) = (1, x, 1, y) ,

while multiplicativity means

((mn)+, x, (mn)−, y) =
(
tX,Y ◦ (mX × Y )

)
(m, n, x, y)

(3.20)= ((M × X × mY ) ◦ mX×M×M×Y ◦ (M × tX,M×Y ) ◦ tM×X,Y )(m, n, x, y)

= (m+n+, x, n−m−, y)

for all sets X, Y , all x ∈ X, y ∈ Y and m, n ∈ M . Thus we get a lift of the inner hom
functor of Set if and only if δ : M → M × Mop is a monoid map. Here Mop is the opposite
monoid, i.e. the set M with multiplication m · n = nm and unit element 1.

Given two M -sets U and V , from (3.24) one computes the action of M on [U, V ] =
Set(U, V ) to be

(m.f)(u) = m+.f(m−.u)
for all m ∈ M , u ∈ U , f ∈ Set(U, V ). The unique function ε : M → ∗ to the terminal
object serves as an augmentation: it is automatically an algebra map.
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To lift the full skew-closed structure of Set to MSet = SetM×−, we need the transforma-
tions i, j, Γ specified in Example 2.3 to be M -module morphisms. To this aim, t satisfies
(3.21) (up to identifying X × ∗ with X) if and only if

(m+, x) =
(
(M × X × ε) ◦ tX,∗ ◦ ρM×X

)
(m, x)

= (M × ρX)(m, x) = (m, x)

for every set X, all x ∈ X and all m ∈ M , which is equivalent to δ(m) = (m, m−).
Furthermore, t satisfies (3.22) (up to identifying ∗ × X with X) if and only if

u =
(
λU ◦ (ε × U)

)
(m, u) =

(
µU ◦ mU ◦ (M × λM×U) ◦ t∗,U

)
(m, u) = m+m−.u

for each M -set U and for every u ∈ U . This yields the necessary and sufficient condition
m+m− = 1 for all m ∈ M .

Before discussing Γ, we note that this already forces M to be a group, possibly subject
to extra conditions imposed by Γ. Indeed, mm− = m+m− = 1 says that every element
m ∈ M has a right inverse. In particular, for a given m, we have that m− has m−− as
right inverse. Since M is associative, the simple computation

m = m(m−m−−) = (mm−)m−− = m−−

shows that m is a two-sided inverse of m−, and so every element of M is invertible.
For Γ, we have that t satisfies (3.23) if and only if

(m+, x, m−, y, u) =
(
tX,Y ×U ◦ αM×X,Y,U

)
(m, x, y, u)

(3.23)=
((

M × X × M × Y × µ
(2)
U

)
◦ (M × X × tY,M×U) ◦ (M × αX,T Y,T U)

◦ tX×M×Y,U ◦ (tX,Y × U)
)

(m, x, y, u)

= (m++, x, m−+, y, m−−m+−.u)

for all sets X, Y , all M -sets (U, µU ), and for every x ∈ X, y ∈ Y , u ∈ U and m ∈ M . This
leads to (m++, m−+, m−−m+−) = (m+, m−, 1) for all m ∈ M .

Finally, this last condition is also satisfied for groups, i.e. if (m+, m−) = (m, m−1).
Indeed,

(m++, m−+, m−−m+−) = (m, m−1, (m−1)−1m−1) = (m, m−1, 1) = (m+, m−, 1) .

Similar considerations can be done for the monad −×M and we summarize this example
in the following Theorem.

Theorem 3.11. Let M ∈ Set be a monoid. The following are equivalent:
(1) M is a group.
(2) The category MSet (SetM ) of left (right) M -sets is left skew-closed such that the forgetful

functor to Set is strictly closed.
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3.4. The linear case. We now look at solutions in kM for a commutative ring k, following
up on Example 2.4. Here LM = − ⊗ M .

For a k-algebra A, the functor T = A ⊗ − is a monad on kM in a natural way. We
need to exhibit a natural k-module map tM,N : (A ⊗ M) ⊗ N → A ⊗ (M ⊗ (A ⊗ N)) with
certain properties. Note that such a map is determined by tk,k: we have

tM,N(a ⊗ m ⊗ n) =
(
tM,N ◦ (A ⊗ cM(m) ⊗ cN(n))

)
(a ⊗ 1 ⊗ 1)

=
(
(A ⊗ cM(m) ⊗ A ⊗ cN(n)) ◦ tk,k

)
(a ⊗ 1 ⊗ 1)

by naturality, where cM (m) : k → M is the unique k-linear map such that cM (m)(1k) = m
for all m ∈ M . We define, in a Sweedler-like notation,

δ : A → A ⊗ A, a 7→ a+ ⊗ a−,

(summation understood) to be the obvious map such that tk,k(a) = a+ ⊗ 1 ⊗ a− ⊗ 1.
From here on, one carries out, mutatis mutandis, the computations from § 3.3. That is,

one declines the formulas from Remark 3.8 in this specific situation. We leave the details
to the reader, and instead just state:

Theorem 3.12. Let A be an algebra over a commutative ring k. Then the closed structure
of kM lifts to a left skew-closed structure on AM if and only if:
(1) (A, ε) is an augmented k-algebra,
(2) there exists an algebra map δ : A → A ⊗ Aop, δ(a) = a+ ⊗ a− (summation understood),
and they satisfy

a+ε(a−) = a (GA1)
a+a− = ε(a)1A (GA2)

a++ ⊗ a−+ ⊗ a−−a+− = a+ ⊗ a− ⊗ 1 (GA3)

In this case, A acts on kM(M, V ) as (a.f)(m) = a+f(a−m).

Remark 3.13. (1) The above Theorem details the case of left modules, i.e. we looked at
algebras over the monad A ⊗ −. This choice was arbitrary: we could have chosen the
monad − ⊗ A, whose algebras are exactly the right A-modules. One then finds that
lifting the skew-closed structure of kM to MA is equivalent to A being augmented
via ε, and equipped with an algebra map δ′ : A → Aop ⊗ A, a 7→ a− ⊗ a+, satisfying
similar properties as above. In detail, we have

ε(a−)a+ = a, (GA1’)
a−a+ = ε(a)1A, (GA2’)

a+−a−− ⊗ a−+ ⊗ a++ = 1 ⊗ a− ⊗ a+ (GA3’)

for all a ∈ A. In this case, A acts on kM(M, V ) as (f.a)(m) = f(ma−)a+.
(2) Theorem 3.12 is the result of a fruitful discussion [Bö1] between Gabriella Böhm

and Paolo Saracco during the CIMPA school “Quantum Symmetries” in Bogotá in
2019. ▽
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4. Gabi-algebras: basic properties and examples

For the rest of the paper, we will be concerned with the situation of Theorem 3.12.

4.1. Definition and examples. Let us now define the main character of the paper.

Definition 4.1. An algebra A over k satisfying the equivalent conditions of Theorem 3.12
is called a left gabi-algebra. If A satisfies the conditions from Remark 3.13(1), then we call
it a right gabi-algebra. If A is a gabi-algebra such that the lifted skew-closed structure on
AM is normal, then we call A a normal gabi-algebra.

Remark 4.2. (1) Given the lifted skew-closed structure on AM, we can obtain the gabi-
algebra structure on A explicitly in the following way. The fact that k is the unit of the
closed structure makes that k must be endowed with a left A-module structure. The
augmentation map ε is then given by ε(a) = a · 1k. Now consider the left A-modules
.A ⊗ A and A ⊗ .A, where the dot indicates how A acts regularly on the first and
second tensorand, respectively. Since the closed structure is lifted from kM, we
have that [A ⊗ .A, .A ⊗ A] = kM(A ⊗ .A, .A ⊗ A), which contains the identity map
id: A ⊗ A → A ⊗ A. Then the comultiplication map δ is given by

δ(a) = (a. id)(1A ⊗ 1A).
(2) Of course, one can work with coalgebras and formally dualise (GA1), (GA2) and

(GA3) from Theorem 3.12 to obtain what we would call a left gabi-coalgebra, or
(GA1’), (GA2’) and (GA3’) from (1) above to obtain a right gabi-coalgebra.

As for algebras, a gabi-coalgebra structure on a given coalgebra leads to additional
structure on its category of comodules. For example, let C be a right gabi-coalgebra,
that is a coalgebra C endowed with two coalgebra maps, a unit 1C : k → C and a
multiplication ∇ : C ⊗ Ccop → C, c ⊗ d 7→ c.d, satisfying

c.1C = c, (GC1’)
c(1).c(2) = ε(c)1C , (GC2’)

ϵ(e)c.d =
(
c.e(2)

)
.
(
d.e(1)

)
. (GC3’)

Consider two right comodules N and P . Then the k-linear hom space between them
can be endowed with the following structure map

kM(N, P ) //
kM(N, P ⊗ C)

φ � //

(
n 7→ ∑

i φ
(
n0
)

0
⊗ φ

(
n0
)

1
.n1

)

If N is moreover finite-dimensional, then we have a natural k-linear isomorphism

kM(N, P ⊗ C) ∼= kM(N, P ) ⊗ C

and the above map, combined with this isomorphism, endows kM(N, P ) with a right C-
comodule structure. In particular, this will endow the category of all finite-dimensional
right C-comodules with a skew closed structure in such a way that the forgetful functor
to finite-dimensional vector spaces strictly preserves the closed structure.
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By using classical Tannaka duality, the above reasoning can be reversed. First,
recall that for any finite-dimensional right comodule N over an arbitrary coalgebra C,
N∗ is a left C-comodule with respect to

N∗ → C ⊗ N∗, f 7→
∑

f
(
ei0

)
ei1 ⊗ ei,

where ∑i ei ⊗ ei is a dual basis of N , and so it is a right Ccop-comodule with respect to
N∗ → N∗ ⊗ Ccop, f 7→

∑
ei ⊗ f

(
ei0

)
ei1.

This shows that the contravariant auto-equivalence on the category of finite-dimensional
vector spaces given by taking the linear dual lifts to a contravariant equivalence
between the category of finite-dimensional right C-comodules and the category of
finite-dimensional right Ccop-comodules. Suppose now that the category MC

fd of finite-
dimensional right C-comodules is skew closed in such a way that the forgetful functor
to finite-dimensional vector spaces strictly preserves the closed structure. Then, by
applying the above equivalence, the internal hom functor

[−, −] : (MC
fd)op × MC

fd → MC
fd

can be rewritten as
[−, −] : MCcop

fd × MC
fd → MC

fd

which translates by Tannaka duality to a coalgebra morphism
∇ : C ⊗ Ccop → C

which will endow C with a right gabi-coalgebra structure. ▽

Henceforth, we focus on the left-hand side case and we call left gabi-algebras simply
gabi-algebras.

Example 4.3 (Hopf algebras). Let H be a Hopf algebra over k. Then δ(h) = h(1) ⊗ S(h(2))
turns H into a gabi-algebra. Indeed, H is augmented; h(1)ε(S(h(2))) = h holds since S is
an anti-coalgebra map and ∆ is (right) counital; h(1)S(h(2)) = ε(h)1 holds since S is a
(right) convolution inverse of the identity; and finally

h(1,1)⊗S(h(2))(1) ⊗ S(S(h(2))(2))S(h(1,2)) = h(1,1) ⊗ S(h(2))(1) ⊗ S(h(1,2)S(h(2))(2))
= h(1,1) ⊗ S(h(2,2)) ⊗ S(h(1,2)S(h(2,1))) = h(1) ⊗ S(h(4)) ⊗ S(h(2)S(h(3)))
= h(1) ⊗ S(h(2)) ⊗ 1 .

If the antipode of H is invertible, then also the map h 7→ h(2) ⊗ S−1(h(1)) turns H into
a gabi-algebra. The choice of using the antipode or the inverse antipode corresponds to
lifting either the (entire) right or left closed monoidal structure to the category of left
modules. Evidently, h 7→ S(h(1)) ⊗ h(2) yields a right gabi-algebra structure. △

Example 4.4 (one-sided Hopf algebras). In Example 4.3 we did not use the fact the
antipode S is a left convolution inverse of the identity. This suggests another class of
examples, namely one-sided Hopf algebras.

A right (resp., left) Hopf algebra is a bialgebra B in which the identity has a right (resp.,
left) convolution inverse. A right Hopf algebra whose right antipode is anti-multiplicative
and anti-comultiplicative carries the structure of a left gabi-algebra with respect to ε and
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δ(b) := b(1) ⊗ S(b(2)) for all b ∈ B, i.e., it lifts the closed structure of kM to its category
of left modules (symmetrically for the left Hopf algebra case). It is easy to see that a
one-sided convolution inverse of the identity is always unital and counital (see, e.g., [Sa2,
Remark 3.8]), so an anti-multiplicative and anti-comultiplicative one-sided antipode is
automatically an anti-bialgebra morphism.

Examples of one-sided but not two-sided Hopf algebras exist in the literature: see
[GNT, LT, NT, RT]. Namely, [GNT, Example 21] exhibits an example of a genuine left
Hopf algebra whose left antipode is an anti-bialgebra morphism, constructed as the free
left Hopf algebra over a coalgebra. In [NT, §3], a similar construction is used to exhibit an
example of a left Hopf algebra in which no left antipode can be an anti-bialgebra morphism.
In [RT, §3], a new example of a left Hopf algebra is provided by modifying the construction
of SLq(2); here as well the left antipode is neither an anti-algebra nor an anti-coalgebra
morphism. The latter example is extended in [LT] to provide a whole family of left Hopf
algebras S̃Lq(n) for all n ≥ 2. △

Inspired by Example 4.3 and Example 4.4, let us introduce the following definition.

Definition 4.5. The antipode of a gabi-algebra A is the map σ : A → A defined by
σ(a) = ε(a+)a− for all a ∈ A.

The antipode σ is a composition of algebra morphisms,

σ = A
δ−→ A ⊗ Aop ε⊗id−−→ Aop ,

and hence itself an algebra morphism. Furthermore, it is a morphism of augmented algebras
since for all a ∈ A,

(ε ◦ σ)(a) = ε(a+)ε(a−) = ε(a).

Remark 4.6. One can now give trivial examples of an algebra H such that the forgetful
functor ω : HM → kM is both strictly closed and strictly monoidal, but not closed
monoidal. We simply need a bialgebra structure implementing a monoidal structure, and
an unrelated Hopf algebra structure implementing the closed structure as in Example 4.3.
For example, H = k[x], with the bialgebra structure

∆(x) = x ⊗ x, ε(x) = 1,

and the Hopf algebra structure

∆(x) = 1 ⊗ x + x ⊗ 1, ε(x) = 0, S(x) = −x.

A more significant class of examples is offered by one-sided Hopf algebras as in Example 4.4.
We will treat the latter case in more detail in § 4.5. ▽

In view of what we mentioned at the beginning of § 3.1, for a gabi-algebra A the lifted
skew-closed structure on AM is automatically right normal. The interested reader may
now wonder what happens with left and associative normality. Since it will be easier to
answer after discussing tricocycloids and tensor-hom adjunctions in § 4.2 and § 4.3, we
postpone answering them until Proposition 5.10 and Proposition 5.11.
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4.2. Gabi-algebras and tricocycloids. Let us now show that a gabi-algebra A canon-
ically admits the structure of a so-called lax tricocycloid in kM. This allows us also to
discuss a few conditions under which a gabi-algebra structure on an algebra A is coming
from a Hopf algebra structure (see Theorem 5.3).
Definition 4.7 ([St1, §3]). Let (C, ⊗, 1) be a braided monoidal category with braiding
c. A lax tricocycloid in C is an object A together with a morphism v : A ⊗ A → A ⊗ A
satisfying

(v ⊗ A) ◦ (A ⊗ cA,A) ◦ (v ⊗ A) = (A ⊗ v) ◦ (v ⊗ A) ◦ (A ⊗ v) . (4.1)
The morphism c−1

A,A ◦v is a fusion operator (see [St1, Proposition 1.1]). When v is invertible,
we drop the adjective ‘lax’. A (lax) tricocycloid (A, v) is augmented if there are morphism
η : 1 → A and ε : A → 1 such that

(A ⊗ ε) ◦ v ◦ (A ⊗ η) = A, (ε ⊗ A) ◦ v = A ⊗ ε, v ◦ (η ⊗ A) = A ⊗ η, ε ◦ η = 1 . (4.2)
The notion of tricocycloid encompasses both bialgebras and Hopf algebras in C. In

fact, augmented lax tricocycloid structures (v, η, ε) on an object A are in one-to-one
correspondence with bialgebra structures (m, ∆, η, ε) on A with the inverse braiding, and
this bialgebra is a Hopf algebra if and only if v is invertible [LS1, Proposition 2.3]. The
tricocycloid equation (4.1) encodes associativity, coassociativity, and the fact that ∆ is a
multiplicative map with respect to the inverse braiding.
Example 4.8. Let H be a Hopf algebra over k. Then v(a ⊗ b) = a(2)b ⊗ a(1) and
v′(a⊗b) = b(1) ⊗S(b(2))a define lax tricocycloid structures. In fact, v′ = v−1, and (A, v, 1, ε)
is an augmented tricocycloid. △

But we do not need a Hopf algebra or a bialgebra structure in order to get a tricocycloid.
Proposition 4.9. Let A ∈ kM be a gabi-algebra and set v(a ⊗ b) := b+ ⊗ b−a for all
a, b ∈ A. Then (A, v) is a lax tricocycloid.
Proof. We compute

((v ⊗ A) ◦ (A ⊗ twA,A) ◦ (v ⊗ A))(a ⊗ b ⊗ c) = ((v ⊗ A) ◦ (A ⊗ twA,A))(b+ ⊗ b−a ⊗ c)

= (v ⊗ A)(b+ ⊗ c ⊗ b−a)

= c+ ⊗ c−b+ ⊗ b−a ,

where tw is the usual twist, and on the other hand,

((A ⊗ v) ◦ (v ⊗ A) ◦ (A ⊗ v))(a ⊗ b ⊗ c) = ((A ⊗ v) ◦ (v ⊗ A))(a ⊗ c+ ⊗ c−b)

= (A ⊗ v)(c++ ⊗ c+−a ⊗ c−b)

= c++ ⊗ (c−b)+ ⊗ (c−b)−c+−a

= c++ ⊗ c−+b+ ⊗ b−c−−c+−a

(GA3)= c+ ⊗ c−b+ ⊗ b−a .

The expressions agree, and hence the claim follows. □
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4.3. Tensor-hom adjunction. As it turns out, gabi-algebras allow for a ‘tensor-hom’-like
adjunction on their categories of modules.

Let A be a gabi-algebra and M be a left A-module. Consider the k-module A ⊗ M ,
which we turn into an A-bimodule via

a.(b ⊗ m).c = abc+ ⊗ c−m .

We denote this bimodule by A ⊙ M .

Theorem 4.10. For any M ∈ AM, there is an adjunction

AM ⊥ AM

(A⊙M)⊗A−

kM(M,−)

.

The unit and counit of the adjunction are

coevM
N : N → kM(M, (A ⊙ M) ⊗A N), n 7→ (m 7→ (1A ⊙ m) ⊗A n)

and

evM
N : (A ⊙ M) ⊗A kM(M, N) → N, (a ⊙ m) ⊗A f 7→ af(m) .

It is routine to check the unit-counit adjunction. Instead of giving the proof, we will
briefly explain where the adjunction comes from. First of all, the free-forgetful adjunction
for AM gives an isomorphism kM(M, N) ∼= AM(A ⊗ M, N) of k-modules, for any k-
module M and A-module N . Transporting the left A-module structure on kM(M, N)
through this isomorphism, one arrives at the right module structure on A ⊙ M . Finally,
one uses the standard tensor-hom adjunction for bimodules over rings, see (2.7). The chain
of isomorphisms is thus

AM(N, kM(M, P )) ∼= AM(N, AM(A ⊙ M, P )) ∼= AM((A ⊙ M) ⊗A N, P ) .

Remark 4.11. Theorem 4.10 actually holds more generally: this adjunction exists whenever
A is an algebra admitting an algebra map δ : A → A ⊗ Aop. ▽

4.4. Skew-monoidal structure. Any skew-closed category in which the inner hom functor
admits a left adjoint possesses a skew-monoidal structure (see § 2.2). Here we give the
skew-monoidal structure of the category of modules over a gabi-algebra, associated to the
tensor-hom adjunction from Theorem 4.10.

Consider the bifunctor

⊠ : C × C → C, M ⊠ N = (A ⊙ N) ⊗A M .

Proposition 4.12. Let A be a gabi-algebra. The ⊠ tensor product defined above provides
a left skew-monoidal structure on AM with unit k, unitors

λN : k ⊠ N → N, (a ⊙ n) ⊗A 1k 7→ an, (4.3)
ρM : M

∼−→ M ⊠ k, m 7→ (1A ⊙ 1k) ⊗A m,
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and associator
αL,M,N : (L ⊠ M) ⊠ N → L ⊠ (M ⊠ N),

(a ⊙ n) ⊗A

(
(b ⊙ m) ⊗A l

)
7→
(

ab+ ⊙
(
(1A ⊙ b−n) ⊗A m

))
⊗A l .

(4.4)

Moreover, this is a monoidal structure (i.e., the unitors and associator are isomorphisms)
if and only if A is a normal gabi-algebra.

Proof. The adjunction from Theorem 4.10 is given in terms of hom-sets as

AM(X ⊠ Y, V ) ∼−→ AM(X, kM(Y, V )), f 7→
(

f# : x 7→
(
y 7→ f((1 ⊙ y) ⊗A x)

))
with inverse

AM(X, kM(Y, V )) ∼−→ AM(X ⊠ Y, V ) g 7→
(
g♭ : (a ⊙ y) ⊗A x 7→ ag(x)(y)

)
,

where the action of a is in V . We leave to the interested reader to make explicit each time
to which adjunction (−)# and (−)♭ refer.

From the paragraph above (2.5), we can now immediately describe the left unitor as

λX : k ⊠ X = (A ⊙ X) ⊗A k → X, λX

(
(a ⊙ x) ⊗A 1k

)
= j♭

X

(
(a ⊙ x) ⊗A 1k

)
= ax,

while unpacking (2.5) entails that the right unitor has to be
ρX : X → X ⊠ k = (A ⊙ k) ⊗A X, x 7→ (1A ⊙ 1k) ⊗A x.

Notice that (2.5) is an isomorphism, since kM(k, X) ∼= X as left A-modules, and ρX =
id#

X⊠k. Furthermore, ρX is invertible, as expected, with inverse

ρ−1
X : X ⊠ k → X, ρ−1

X

(
(a ⊙ 1k) ⊗A x

)
= id♭

X

(
(a ⊙ 1k) ⊗A x

)
= ax

(the invertibility of ρX follows from Theorem 2.12 and the fact that AM is right normal).
Now, we compute the associator. First of all, the natural transformation from (2.3)

is given by (pX,Y,Z(h)) (x)(y) = h(1 ⊙ y ⊗A x), for any linear map h : X ⊗ Y → Z. The
natural transformation (2.4) between hom functors can be described as f 7→ (p ◦ f#)♭♭, for
an A-linear morphism f : X ⊠ (Y ⊠ Z) → V . Explicitly, and by omitting a few ⊠,

(p ◦ f#)♭♭(a ⊙ z ⊗A (b ⊙ y ⊗A x)) = (pX,Y,X(Y Z) ◦ f#)♭♭(a ⊙ z ⊗A (b ⊙ y ⊗A x))
= a(pX,Y,X(Y Z) ◦ f#)♭(b ⊙ y ⊗A x)(z)
(⋆)= a

[
b.(pX,Y,X(Y Z) ◦ f#)(x)(y)

]
(z)

= ab+(pX,Y,X(Y Z) ◦ f#)(x)(y)(b−z)
= ab+f#(x)(1 ⊙ b−z ⊗A y)
= ab+f(1 ⊙ (1 ⊙ b−z ⊗A y) ⊗A x)
= f(ab+ ⊙ (1 ⊙ b−z ⊗A y) ⊗A x) ,

where in the step marked (⋆) care has to be taken: the action of b takes place in kM(Z, V ).
By using the Yoneda lemma, we finally find αX,Y,Z = (pX,Y,X(Y Z) ◦ id#

X(Y Z))♭♭ and it is clear
that this coincides with the associator in the statement.
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The last statement is a direct consequence of Theorem 2.12 and the definition of a normal
gabi-algebra. □

Note also that
k ⊠ X = (A ⊙ X) ⊗A k ∼= (A ⊙ X) ⊗A A/A+ ∼= (A ⊙ X)/(A ⊙ X)A+,

where A+ := ker(ε) is the augmentation ideal of A.

4.5. A family of non-trivial examples: one-sided Hopf algebras. We already saw
in Example 4.4 that right Hopf algebras with anti-multiplicative and anti-comultiplicative
one-sided antipode are examples of gabi-algebras, whence their categories of modules
are left skew-closed. It is interesting to remark explicitly that these provide an example
of left skew-closed categories which are neither left normal nor associative normal. Let
(B, ∆, ε) be a k-bialgebra admitting an anti-multiplicative and anti-comultiplicative right
antipode S which is not a left antipode. Then B is a left gabi-algebra with respect to
ε and δ(b) := b(1) ⊗ S(b(2)) for all b ∈ B, whence the category BM is a left skew-closed
category with respect to [M, N ] := kM(M, N) with action (b · f)(m) := b(1)f

(
S(b(2))m

)
for all b ∈ B, m ∈ M , f ∈ kM(M, N) and for all M, N in BM. Now, consider the k-linear
map

β : B ⊗ B → B ⊗ B, a ⊗ b 7→ a(1) ⊗ S(a(2))b, (4.5)
and endow the domain with the diagonal B-module structure a · (b ⊗ c) := a(1)b ⊗ a(2)c
and the codomain with the left regular B-module structure a · (b ⊗ c) := ab ⊗ c for all
a, b, c ∈ B. It is clear that β is not B-linear, otherwise the relation

a(1) ⊗ S(a(2))a(3) = β(a · (1 ⊗ 1)) = a · β(1 ⊗ 1) = a ⊗ 1
would entail that S is also a left antipode, contradicting our choice. Nevertheless,

a(1) · β
(
S
(
a(2)

)
· (b ⊗ c)

)
= a(1) · β

(
S
(
a(3)

)
b ⊗ S

(
a(2)

)
c
)

= a(1) ·
(

S
(
a(3)

)
(1)

b(1) ⊗ S
(

S
(
a(3)

)
(2)

b(2)

)
S
(
a(2)

)
c
)

= a(1)S
(
a(4)

)
b(1) ⊗ S

(
a(2)S

(
a(3)

)
b(2)

)
c = ε(a)β(b ⊗ c)

implies that the assignment 1k 7→ β is an element in BM (k, [B ⊗ B, B ⊗ B]) which does
not come from an element in BM(B ⊗ B, B ⊗ B) via the morphism in (N1). Therefore,
the skew-closed structure is not left normal. It is not associative normal either, or
Proposition 5.10 would imply that β is invertible, which is not the case.

As a final observation remember that, since BM is not left normal as a skew-closed cate-
gory, Theorem 2.12 entails that the unitor λM from (2.2) cannot be a natural isomorphism.
It is interesting to see explicitly why this is the case in our concrete example. To this aim,
notice that even if β from (4.5) is not B-linear, it induces a left B-linear map

β̂ : B ⊙ (.B ⊗ .B)
(B ⊙ (.B ⊗ .B))B+ → B ⊙ (.B ⊗ B)

(B ⊙ (.B ⊗ B))B+ , a ⊗ (b ⊗ c) 7→ a ⊗ (b(1) ⊗ S(b(2))c),

because for all x ∈ B+ we have

ax(1) ⊗ (S(x(3))(1)b(1) ⊗ S
(
S(x(3))(2)b(2)

)
S(x(2))c) = ax(1) ⊗ (S(x(2))b(1) ⊗ S(b(2))c)
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= ε(x)a ⊗ (b(1) ⊗ S(b(2))c) = 0.

If, in this framework,

λ.B⊗.B : B ⊙ (.B ⊗ .B)
(B ⊙ (.B ⊗ .B))B+ → .B ⊗ .B, a ⊗ (b ⊗ c) 7→ a(1)b ⊗ a(2)c,

is invertible, with inverse necessarily given by

λ−1
.B⊗.B : .B ⊗ .B → B ⊙ (.B ⊗ .B)

(B ⊙ (.B ⊗ .B))B+ , a ⊗ b 7→ a(1) ⊗ (1 ⊗ S(a(2))b),

then we have the equality

a ⊗ (1 ⊗ 1) = a(1) ⊗ (1 ⊗ S(a(2))a(3))

in B ⊙ (.B ⊗ .B)/(B ⊙ (.B ⊗ .B))B+. By applying β̂, the latter is an equality in B ⊙ (.B ⊗
B)/(B ⊙ (.B ⊗ B))B+ as well, but now we may apply ε ⊗ ε ⊗ id to it (it is well-defined)
to conclude that ε(a) = S(a(1))a(2). A contradiction.

Modules over one-sided Hopf algebras also offer an example of a monoidal and left
skew-closed category whose structures are not compatible, that is, which does not form
a left skew-closed skew-monoidal category in the sense of Definition 2.14. Indeed, if B
is as above, then (BM, ⊗, k) is a monoidal category and (BM, kM(−, −), k) is a left
skew-closed category, but the functor − ⊗ M is not left adjoint to the functor kM(M, −):
while the unit

coevM
N : N → kM(M, N ⊗ M), n 7→ (m 7→ n ⊗ m)

is left B-linear, the unit

evM
N : kM(M, N) ⊗ M → N, f ⊗ m 7→ f(m)

is not, unless S is a two-sided antipode.

5. When are gabi-algebras Hopf algebras?

We saw (cf. Example 4.3) that Hopf algebras are examples of gabi-algebras, but also
that not any gabi-algebra is Hopf (see Example 4.4). This section is devoted to answer the
question when the gabi and Hopf notions coincide.

5.1. Finite-dimensional double gabi-algebras are Hopf. We first establish an easy
criterion for tricocycloids to give Hopf algebras.

Lemma 5.1. Let (A, v) be a lax tricocycloid in a symmetric monoidal category.
(1) If v is invertible, then (A, v−1) is a lax tricocycloid as well.
(2) Assume that there are morphisms η : 1 → A and ε : A → 1 such that

ε ⊗ A = (A ⊗ ε) ◦ v, η ⊗ A = v ◦ (A ⊗ η), ε ◦ η = 1 .

If v is invertible and (A ⊗ ε) ◦ v−1 ◦ (A ⊗ η) = A holds, then (A, v−1, η, ε) is an
augmented tricocycloid, and thus equips A with the structure of a Hopf algebra.
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Proof. (1) follows directly from a simple computation, using that the braiding is its own
inverse. (2) is easy as well: if v is invertible and satisfies the given equations, then v−1

satisfies

(ε ⊗ A) ◦ v−1 = A ⊗ ε, v−1 ◦ (η ⊗ A) = A ⊗ η .

Together with ε ◦ η = 1 and the assumption (A ⊗ ε) ◦ v−1 ◦ (A ⊗ η) = A, these are exactly
the defining equations (4.2) making the tricocycloid (A, v−1) augmented. □

Example 5.2. Continuing Example 4.8, (A, v′, 1, ε) satisfies the assumptions of the second
point of Lemma 5.1. △

Define now for a gabi-algebra A the canonical map

β : A ⊗ A → A ⊗ A, a ⊗ b 7→ a+ ⊗ a−b . (5.1)

If β is invertible, we set ∆(a) = β−1(a ⊗ 1). We can now show that gabi-algebras with
invertible canonical map are quite close to Hopf algebras. This will also be helpful in
proving Proposition 5.11.

Theorem 5.3. Let A be a gabi-algebra. If β is invertible and ∆ is left counital, i.e.
(ε ⊗ A) ◦ ∆ = A, then (A, ∆, ε) is a coalgebra. In fact, A is a Hopf algebra whose antipode
is the antipode σ of A.

Proof. Let tw be the flip map in kM, i.e. the canonical symmetric braiding. By Proposi-
tion 4.9, (A, v = β ◦ tw) is a lax tricocycloid. Clearly, v is invertible if and only if β is. We
also have ε ◦ η = 1, and one computes

((A ⊗ ε) ◦ v)(a ⊗ b) = b+ε(b−a) (GA1)= (ε ⊗ A)(a ⊗ b) ,

and

(v ◦ (A ⊗ η))(a) = 1+ ⊗ 1−a = 1 ⊗ 1a = (η ⊗ A)(a) .

Finally, we have

(A ⊗ ε) ◦ v−1 ◦ (A ⊗ η) = A ⇐⇒ (ε ⊗ A) ◦ β−1 ◦ (A ⊗ η) = A ,

and thus all the assumptions for the second point of Lemma 5.1 are satisfied. This shows
that we indeed get a Hopf algebra. By the general theory of augmented lax tricocycloids
with invertible structure map, the antipode is given by

S(a) = ((ε ⊗ A) ◦ v ◦ (η ⊗ A))(a) = ((ε ⊗ A) ◦ β ◦ (A ⊗ η))(a)
= ((ε ⊗ A) ◦ β)(a ⊗ 1) = (ε ⊗ A)(a+ ⊗ a−1) = ε(a+)a− = σ(a) ,

as claimed. □

The previous result allows us to reduce a first class of gabi-algebras to Hopf algebras.

Corollary 5.4. Let k be a field and A be a finite-dimensional gabi-algebra over k with
invertible antipode σ. Define ∆(a) = a+ ⊗ σ−1(a−). Then (A, m, 1, ∆, ε, σ) is a Hopf
algebra.
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Proof. In A, we have the identity

a ⊗ 1 (GA3)= a++ ⊗ ε(a−+)a−−a+− = a++ ⊗ σ(a−)a+− ,

which upon applying 1 ⊗ σ−1 becomes a ⊗ 1 = a++ ⊗ σ−1(a+−)a−. Thus the composition

a ⊗ b
β7→ a+ ⊗ a−b 7→ a++ ⊗ σ−1(a+−)a−b

is the identity, i.e. the canonical map β has a left inverse. By finite-dimensionality of A,
β is invertible. As in the paragraph preceding Theorem 5.3, we set ∆(a) = β−1(a ⊗ 1),
i.e. ∆(a) = a+ ⊗ σ−1(a−). If ∆ is left counital, then by Theorem 5.3 we are done. So we
compute

((ε ⊗ A) ◦ ∆)(a) = ε(a+)σ−1(a−) = σ−1(σ(a)) = a ,

exactly as needed. □

Our next aim is to state a sufficient condition for the antipode of a gabi-algebra to be
invertible. First, note that for any closed monoidal category C with left and right internal
homs [−, −]l and [−, −]r, respectively, one has natural isomorphisms

C(X, [Y, Z]r) ∼= C(X ⊗ Y, Z) ∼= C(Y, [X, Z]l) .

One can now generalize this to the closed (non-monoidal) setting by simply demanding two
closed structures with the same unit on the category such that an isomorphism between
the two outer hom-sets hold. Let us apply this to the gabi-algebra setting.

Lemma 5.5. Let (A, ε) be an augmented algebra endowed with two gabi-algebra structures
denoted by δ(a) = a+ ⊗ a− and δ′(a) = a+′ ⊗ a−′. Denote the associated closed structures
on AM by [−, −] and [−, −]′ respectively. Then, the following are equivalent:
(1) The k-linear isomorphism

ϕ : kM(X, kM(Y, Z)) → kM(Y, kM(X, Z)), ϕ(f)(y)(x) = f(x)(y)
whose inverse is given by

ϕ−1 : kM(Y, kM(X, Z)) → kM(X, kM(Y, Z)), ϕ−1(g)(x)(y) = g(y)(x)
restricts and corestricts to an isomorphism

AM(X, [Y, Z]) ∼= AM(Y, [X, Z]′)
for all X, Y, Z in AM.

(2) a+′a−′+ ⊗ a−′− = 1 ⊗ a and a+a−+′ ⊗ a−−′ = 1 ⊗ a hold for all a ∈ A.
If one of these equivalent conditions holds, then we call A a double gabi-algebra.

Proof. We will first show that for all f in AM(X, [Y, Z]), ϕ(f) is A-linear if and only if
a+′a−′+ ⊗ a−′− = 1 ⊗ a for all a ∈ A. Now, observe that the left A-linearity of ϕ(f) means
that (

a.ϕ(f)(y)
)
(x) = a+′ϕ(f)(y)(a−′x) = a+′f(a−′x)(y) = a+′

(
a−′ .f(x)

)
(y)

= a+′a−′+f(x)(a−′−y)
equals

ϕ(f)(ay)(x) = f(x)(ay)
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for all x ∈ X, y ∈ Y , a ∈ A. Clearly, if a+′a−′+ ⊗ a−′− = 1 ⊗ a holds for all a ∈ A, then
this is the case. Conversely, assume that (1) holds. Let X = Y = AA and Z = AA ⊗ A and
consider f ∈ AM(A, [A, A ⊗ A]) uniquely determined by f(1)(a) := 1 ⊗ a for all a ∈ A.
Then we have

1 ⊗ a = f(1)(a) = ϕ(f)(a)(1) =
(
a.ϕ(f)(1)

)
(1) = a+′ϕ(f)(1)(a−′) = a+′f(a−′)(1)

= a+′

(
a−′ .f(1)

)
(1) = a+′a−′+f(1)(a−′−) = a+′a−′+ ⊗ a−′−

for all a ∈ A, as desired. A straightforward adaptation of this argument shows that ϕ−1

applied on AM(Y, [X, Z]′) takes values in AM(X, [Y, Z]) if and only if a+a−+′ ⊗a−−′ = 1⊗a
hold for all a ∈ A. □

Lemma 5.6. Let A be a double gabi-algebra, then the antipode σ is invertible.

Proof. In this case, one has

σ(σ′(a)) = ε(a+′a−′+)a−′− = a and σ′(σ(a)) = ε(a+a−+′)a−−′ = a ,

so that the antipode is invertible. □

Combining Lemma 5.6 with Corollary 5.4 we immediately obtain the following.

Corollary 5.7. A finite-dimensional double gabi-algebra is a Hopf algebra.

5.2. Commutative gabi-algebras are Hopf algebras. Throughout this section, A
shall always be a gabi-algebra over the commutative ring k.

Proposition 5.8. If the gabi-algebra A is commutative, then it is a Hopf algebra with
comultiplication ∆(a) := a(1) ⊗ a(2) := a+ ⊗ σ(a−) and antipode σ.

Proof. Since A is commutative, on the one hand we have that

a++ ⊗ a+−σ(a−) = a++ ⊗ ε(a−+)a+−a−− = a++ε(a−+) ⊗ a−−a+−
(GA3)= a ⊗ 1,

and on the other the computation

σ2(a) = ε(a+)σ(a−) (GA2)= a++a+−ε(a−+)a−− = a++ε(a−+)a−−a+−
(GA3)= a

entails that also
a++ ⊗ σ(a+−)a− = a++ ⊗ σ

(
σ(a−)a+−

)
= a ⊗ 1

for all a ∈ A, whence the canonical map β from (5.1) is invertible with inverse β−1(a⊗b) :=
a+ ⊗ σ(a−)b. If we set ∆(a) = a+ ⊗ σ(a−), then it is left counital because

(ε ⊗ A)(∆(a)) = ε(a+)σ(a−) = σ2(a) = a

and so the statement follows from Theorem 5.3. □

Corollary 5.9. A commutative algebra lifts the closed structure of kM if and only if it
lifts the closed monoidal structure.
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5.3. Gabi-algebras and normality. We are now in the position of establishing which
additional properties on A correspond to associative and left normality of the skew-closed
structure, as promised in § 4.1.

Proposition 5.10. Let A be a gabi-algebra over k. Then the skew-closed structure on AM
is associative normal if and only if the canonical map β from (5.1) is invertible.

Proof. Recall from Theorem 2.12 that the closed structure on AM is associative normal if
and only if every component of the associative constraint from (4.4), that is

αL,M,N : (L ⊠ M) ⊠ N → L ⊠ (M ⊠ N),

(a ⊙ n) ⊗A

(
(b ⊙ m) ⊗A l

)
7→
(
ab+ ⊙

(
(1A ⊙ b−n) ⊗A m

))
⊗A l ,

is an isomorphism. Therefore, we are going to show that αL,M,N is an isomorphism for every
L, M, N in AM if and only if β admits an inverse, that we write β−1(a⊗b) = a(1) ⊗a(2)b for
all a, b ∈ A by a slight abuse of notation that will be soon justified (see Proposition 5.11).
In such a case,

a(1)+ ⊗ a(1)−a(2) = a ⊗ 1 = a+(1) ⊗ a+(2)a−

and a+ ⊗ a−(1) ⊗ a−(2) = a++ ⊗ a− ⊗ a+−
(5.2)

for all a ∈ A (the latter follows by applying id ⊗β to both sides and comparing the results).
Observe that since β(a ⊗ 1) = δ(a) = a+ ⊗ a− is unital and multiplicative, we have that

β(a(1)b(1) ⊗ a(2)b(2)) = (a(1)b(1))+ ⊗ (a(1)b(1))−a(2)b(2) = a(1)+b(1)+ ⊗ b(1)−a(1)−a(2)b(2)

= ab(1)+ ⊗ b(1)−b(2) = ab ⊗ 1 = ββ−1(ab ⊗ 1),

whence A → A ⊗ A, a 7→ β−1(a ⊗ 1) is a morphism of algebras.
To begin with, let us slightly simplify (4.4). Note that

(L⊠M)⊠N = (A⊙N)⊗A (L⊠M) = (A⊙N)⊗A

(
(A⊙M)⊗A L

) ∼=
(
(A⊙N)⊙M

)
⊗A L

via (a ⊙ n) ⊗A

(
(b ⊙ m) ⊗A l

)
7→
(
(ab+ ⊙ b−n) ⊙ m

)
⊗A l in one direction, for all a, b ∈ A,

m ∈ M , n ∈ N , l ∈ L, and via
(
(a ⊙ n) ⊙ m

)
⊗A l 7→ (a ⊙ n) ⊗A

(
(1A ⊙ m) ⊗A l

)
in the

other. Up to the latter isomorphism,

αL,M,N :
(
(A ⊙ N) ⊙ M

)
⊗A L →

(
A ⊙

(
(A ⊙ N) ⊗A M

))
⊗A L,(

(a ⊙ n) ⊙ m
)

⊗A l 7→
(
a ⊙

(
(1A ⊙ n) ⊗A m

))
⊗A l ,

Suppose now that β is invertible and consider(
A ⊙

(
(A ⊙ N) ⊗A M

))
⊗A L →

(
(A ⊙ N) ⊙ M

)
⊗A L,(

a ⊙
(
(b ⊙ n) ⊗A m

))
⊗A l 7→

(
(a ⊙ b(2)n) ⊙ b(1)m

)
⊗A l ,

which is well-defined because of (5.2). By a direct check, it turns out to be a two-sided
inverse of αL,M,N , so one implication is proved.
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For the other implication, suppose that α is a natural isomorphism and consider the
isomorphism

(A ⊙ A) ⊙ A ∼=
(
(A ⊙ A) ⊙ A

)
⊗A A

αA,A,A−−−−→
(
A ⊙

(
(A ⊙ A) ⊗A A

))
⊗A A ∼= A ⊙ (A ⊗ A),

(a ⊙ b) ⊙ c 7→ a ⊙ (c+ ⊗ c−b) ,

where A ⊗ A is a left A-module with regular left A-action on the left-most tensorand. If
we look at it as a k-linear morphism

α′ : (A ⊗ A) ⊗ A → A ⊗ (A ⊗ A), (a ⊗ b) ⊗ c 7→ a ⊗ (c+ ⊗ c−b),

its inverse is uniquely determined by

(x′ ⊗ x′′) ⊗ x′′′ := α′−1(1 ⊗ (x ⊗ 1)
)

for all x ∈ A. The latter satisfies

1 ⊗ x ⊗ 1 = x′ ⊗ x′′′
+ ⊗ x′′′

−x′′ and 1 ⊗ 1 ⊗ y = y+
′ ⊗ y+

′′y− ⊗ y+
′′′

for all x, y ∈ A. In particular,

x ⊗ 1 = x′′′
+ ⊗ x′′′

−ε(x′)x′′

entails that a ⊗ b 7→ a′′′ ⊗ ε(a′)a′′b is a section of β, while

y ⊗ 1 = y+
′′′ ⊗ ε

(
y+

′
)
y+

′′y−

entails that it is a retraction of β as well, hence it is its inverse. □

Proposition 5.11. Let A be a gabi-algebra whose canonical morphism β is invertible.
Then the closed structure on AM is left normal, too, if and only if A is a Hopf algebra
with comultiplication β−1(a ⊗ 1), counit ε and antipode σ(a) = ε(a+)a− for all a ∈ A.

Proof. Clearly, if the gabi-algebra structure on A comes from a Hopf algebra structure,
then the claim in the statement holds. Thus, let us focus on the other implication. Recall
from Theorem 2.12 that the closed structure on AM is left normal if and only if every
component

λM : (A ⊙ M)/(A ⊙ M)A+ → M, a ⊙ m 7→ am,

of the left unit constraint from (4.3) is an isomorphism. Since, by hypothesis, β is invertible
with inverse β−1(a ⊗ b) = a(1) ⊗ a(2)b for all a, b ∈ A, we know that

a ⊙ m = a(1)+ ⊙ a(1)−a(2)m = 1A ⊙ ε(a(1))a(2)m

for all a ∈ A, m ∈ M . In particular, if λA is invertible, then

1A ⊙ ab = a ⊙ b = 1A ⊙ ε(a(1))a(2)b

and so ab = ε(a(1))a(2)b for all a, b ∈ A. The conclusion now follows from Theorem 5.3. □

We are now ready to formulate the main theorem of this paper, the proof of which now
follows directly from the result above.
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Theorem 5.12. Let A be an algebra. Then there is a bijective correspondence between
normal gabi-algebra structures on A and Hopf algebra structures on A.

In other words, AM is a normal closed category with strictly closed forgetful functor
AM → kM if and only if AM is closed monoidal and the forgetful functor AM → kM is
strictly closed monoidal.

Remark 5.13. One could wonder under which conditions Theorem 5.12 can be extended
to the more general setting of algebras in a general closed monoidal category (possibly
different from kM). To this end, let us make the following observation, which allows us
to recover the above result in such a more general setting. Consider two closed monoidal
categories C and D, and let F : C → D be an (essentially) surjective-on-objects, strict
closed functor. Then we have the following natural isomorphisms:

[F (X ⊗ Y ), FZ] = F [X ⊗ Y, Z] ∼= F [X, [Y, Z]]
= [FX, F [Y, Z]] = [FX, [FY, FZ]] ∼= [FX ⊗ FY, FZ],

where the equalities follow from the fact that the functor F is strict closed, and the
isomorphisms follow from the closed monoidal structures of C and D. Since F is surjective
on objects and by invoking enriched Yoneda (see, e.g., [K, §1.9]), we obtain a natural
isomorphism F (X ⊗ Y ) ∼= FX ⊗ FY , so F is also strong monoidal.

Then, consider a normal gabi-algebra A in a closed braided monoidal category D, let C
be the category of A-modules and F : AM → D the forgetful functor. We showed that
modules are skew closed monoidal and normality of A means that AM is closed monoidal
(see Proposition 4.12). Moreover F is strict closed by construction and essentially surjective
on objects since thanks to the augmentation map ε, we can endow any object of D with a
trivial A-module structure. Then by the above F is also strong monoidal and therefore
usual Tannaka-Krein duality implies that A is a Hopf algebra in D. ▽
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Appendix A. Mixed liftings

Consider categories D, E , and C. On them, consider a comonad (V, ∆, ε) and monads
(W, mW , uW ) and (T, mT , uT ), respectively. Now let F : D × E → C be a functor. The
question is: when does this lift to a functor DV × EW → CT ?

To answer it, let us introduce the following notion.

Definition A.1. A natural transformation of the form νX,Y : TF (V X, Y ) → F (X, WY )
is said to satisfy the lifting property of F with respect to (V, W, T ) if the the following hold:

• mixed (co)unitality:

F (V X, Y ) TF (V X, Y )

F (X, WY )

uT
F (V X,Y )

F (εX ,uW
Y )

νX,Y

and
• mixed (co)multiplicativity:

T 2F (V X, Y ) TF (V X, Y )

T 2F (V 2X, Y ) TF (V X, WY ) F (X, W 2Y ) F (X, WY )

mT
F (V X,Y )

T 2F (∆X ,Y ) νX,Y

T νV X,Y
νX,W Y F (X,mW

Y )

.

Similar to the usual lifting theorem for monads, we can use these to classify liftings in
our current situation.

Theorem A.2. Let C, D, E , V, W, T, and F be as above. The liftings of F are in one-to-
one correspondence with natural transformations satisfying the lifting property of F w.r.t.
(V, W, T ).

More precisely, if ν satisfies the lifting property, and ((X, x), (Y, y)) ∈ DV × EW , then
F (X, Y ) is equipped with the T -action

▷ν
x,y = TF (X, Y ) T F (x,Y )−−−−−→ TF (V X, Y ) νX,Y−−−→ F (X, WY ) F (X,y)−−−−→ F (X, Y ) .

The action on morphisms is determined by F . Conversely, if the functor lifts, i.e. every
pair of (co)actions x, y lifts to an action ▷x,y : TF (X, Y ) → F (X, Y ), then the natural
transformation ν▷

X,Y satisfying the lifting property is obtained as the composition

TF (V X, Y ) T F (V X,uW
Y )

−−−−−−−→ TF (V X, WY )
▷∆X ,mW

Y−−−−−→ F (V X, WY ) F (εX ,W Y )−−−−−−→ F (X, WY ) .

Before proving Theorem A.2, let us record the following useful lemma.

Lemma A.3. Let everything be as in Theorem A.2, and assume that F lifts. Also, let
(X, x) and (Y, y) be a V -coalgebra and a W -algebra, respectively. Then
(1) F (εX , Y ) ∈ CT

(
(F (V X, Y ), ▷∆X ,y) , (F (X, Y ), ▷x,y)

)
(2) F (X, uW

Y ) ∈ CT
(

(F (X, Y ), ▷x,y) ,
(
F (X, WY ), ▷x,mW

Y

) )
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(3) The natural transformation built from the lifting satisfies

ν▷
X,Y = F (εX , uW

Y ) ◦ ▷∆X ,y = F (X, uW
Y ) ◦ ▷x,y ◦ TF (εX , Y ) = ▷x,mW

Y
◦ TF (εX , uW

Y )

Proof. (1) follows immediately, since F lifts by assumption and εX : (V X, ∆X) → (X, x) as
V -comodules. (2) is completely analogous. Finally, (3) follows from appropriate applications
of (1) and (2). □

Proof of Theorem A.2. We first establish the bijection. Let ν be given. Then
ν▷ν

X,Y = F (εX , WY ) ◦ ▷ν
∆X ,mW

Y
◦ TF (V X, uW

Y )

= F (εX , WY ) ◦ F (V X, mW
Y ) ◦ νV X,W Y ◦ TF (∆X , WY ) ◦ TF (V X, uW

Y )
= F (εX , WY ) ◦ F (V X, mW

Y ) ◦ νV X,W Y ◦ TF (V 2X, uW
Y ) ◦ TF (∆X , Y )

= F (εX , WY ) ◦ F (V X, mW
Y ) ◦ TF (V X, WuW

Y ) ◦ νV X,Y ◦ TF (∆X , Y )
= F (εX , WY ) ◦ νV X,Y ◦ TF (∆X , Y )
= νX,Y ◦ TF (V εX , Y ) ◦ TF (∆X , Y )
= νX,Y ,

where we have used nothing but functoriality and the (co)unitality axioms.
On the other hand, given ▷, we have

▷ν▷

x,y = F (X, y) ◦ ν▷
X,Y ◦ TF (x, Y )

= F (X, y) ◦ F (εX , WY ) ◦ ▷∆X ,mW
Y

◦ TF (V X, uW
Y ) ◦ TF (x, Y )

(i)= F (X, y) ◦ F (εX , WY ) ◦ F (V X, uW
Y ) ◦ ▷∆X ,y ◦ TF (x, Y )

= F (εX , Y ) ◦ ▷∆X ,y ◦ TF (x, Y )
(ii)= ▷x,y ◦ TF (εX , Y ) ◦ TF (x, Y )
= ▷x,y .

Both (i) and (ii) use Lemma A.3. The other steps are again naturality and the (co)unitality
axioms.

Thus the bijection is established, and we are left with showing that everything is
well-defined. Let first ν be given. We check unitality of ▷ν :

▷ν
x,x ◦ uT

F (X,Y ) = F (X, y) ◦ νX,Y ◦ TF (x, Y ) ◦ uT
F (X,Y )

= F (X, y) ◦ νX,Y ◦ uT
F (V X,Y ) ◦ F (x, Y )

(∗)= F (X, y) ◦ F (εX , uW
Y ) ◦ F (x, Y )

= F (X, Y ) ,

where the only non-trivial step (∗) uses the mixed (co)unitality of ν. To see the associativity
of △ν , we compute

▷ν
x,y ◦ mT

F (X,Y ) = F (X, y) ◦ νX,Y ◦ TF (x, Y ) ◦ mT
F (X,Y )

= F (X, y) ◦ νX,Y ◦ mT
F (V X,Y ) ◦ T 2F (x, Y )
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(i)= F (X, y) ◦ F (X, mW
Y ) ◦ νX,W Y ◦ TνV X,Y ◦ T 2F (∆X , Y ) ◦ T 2F (x, Y )

(ii)= F (X, y) ◦ F (X, Wy) ◦ νX,W Y ◦ TνV X,Y ◦ T 2F (V x, Y ) ◦ T 2F (x, Y )
(iii)= F (X, y) ◦ F (X, Wy) ◦ νX,W Y ◦ TF (x, WY ) ◦ TνX,Y ◦ T 2F (x, Y )
(iv)= F (X, y) ◦ νX,Y ◦ TF (V X, y) ◦ TF (x, WY ) ◦ TνX,Y ◦ T 2F (x, Y )

= F (X, y) ◦ νX,Y ◦ TF (x, Y ) ◦ T
(
F (X, y) ◦ νX,Y ◦ TF (x, Y )

)
= ▷ν

x,y ◦ T▷ν
x,y ,

as desired. Here, (i) uses mixed (co)associativity, (ii) uses (co)associativity of (co)monad
(co)actions, and (iii) and (iv) use naturality of ν.

Finally we need to check that for (f, g) : ((X, x), (Y, y)) → ((X ′, x′), (Y ′, y′)), the mor-
phism F (f, g) indeed intertwines the T -actions. We have

F (f, g) ◦ ▷ν
x,y = F (f, g) ◦ F (X, y) ◦ νX,Y ◦ TF (x, Y )

= F (X ′, y′) ◦ F (f, Wg) ◦ νX,Y ◦ TF (x, Y )
= F (X ′, y′) ◦ νX′,Y ′ ◦ TF (Xf, g) ◦ TF (x, Y )
= F (X ′, y′) ◦ νX′,Y ′ ◦ TF (x′, Y ′) ◦ TF (f, g)
= ▷ν

x′,y′ ◦ TF (f, g) ,

exactly as needed.
So now assume that F lifts. In particular, the actions ▷ are given. We check the mixed

(co)unitality of ν▷:
ν▷

X,Y ◦ uT
F (V X,Y ) = F (εX , WY ) ◦ ▷∆X ,mW

Y
◦ TF (V X, uW

Y ) ◦ uT
F (V X,Y )

= F (εX , WY ) ◦ ▷∆X ,mW
Y

◦ uT
F (V X,W Y ) ◦ F (V X, uW

Y )
= F (εX , uW

Y ) ,

using unitality of T -actions. For the mixed (co)multiplicativity, we compute
F (X, mW

Y ) ◦ ν▷
X,W Y ◦ Tν▷

V X,Y ◦ T 2F (∆X , Y )
(⋆)= F (X, mW

Y ) ◦ F (X, uW
W Y ) ◦ ▷x,mW

Y
◦ TF (εX , WY ) ◦ Tν▷

V X,Y ◦ T 2F (∆X , Y )
(⋆)= ▷x,mW

Y
◦ TF (εX , WY ) ◦ TF (V X, uW

Y ) ◦ T ▷∆X ,y ◦T 2F (εV X , Y ) ◦ T 2F (∆X , Y )
= ▷x,mW

Y
◦ TF (εX , WY ) ◦ TF (V X, uW

Y ) ◦ T▷∆X ,y

(⋆)= F (εX , uW
Y ) ◦ ▷∆X ,y ◦ T▷∆X ,y

= F (εX , uW
Y ) ◦ ▷∆X ,y ◦ mT

F (V X,Y )
(⋆)= ν▷

X,Y ◦ mT
F (V X,Y ) .

Here, Lemma A.3 was used in all steps marked (⋆).
Finally, we show that ν▷ is natural. Let (f, g) : (X, Y ) → (X ′, Y ′) in D × E . Then

ν▷
X′,Y ′ ◦ TF (V f, g) = F (εX′ , WY ′) ◦ ▷∆X′ ,mW

Y ′
◦ TF (V X ′, uW

Y ′) ◦ TF (V f, g)
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= F (εX′ , WY ′) ◦ ▷∆X′ ,mW
Y ′

◦ TF (V f, Wg) ◦ TF (V X, uW
Y )

(∗)= F (εX′ , WY ′) ◦ F (V f, Wg) ◦ ▷∆X ,mW
Y

◦ TF (V X, uW
Y )

= F (f, Wg) ◦ F (εX , WY ) ◦ ▷∆X ,mW
Y

◦ TF (V X, uW
Y )

= F (f, Wg) ◦ ν▷
X,Y ,

where in (∗) we used that (V f, Wg) is a morphism in DV × EW of (co)free (co)algebras,
and thus F (V f, Wg) is a morphism in CT , intertwining the actions ▷∆X ,mW

Y
and ▷∆X′ ,mW

Y ′
.

This finishes the proof. □

Since a monad on a category is the same as a comonad on the opposite category, we
immediately get the following.
Corollary A.4. Let (T, m, u) be a monad on a category C. Then a functor F : Cop ×C → C
lifts to a functor F # : (CT )op × CT → CT if and only if there is a natural transformation
νX,Y : TF (TX, Y ) → F (X, TY ) satisfying

νX,Y ◦ uF (T X,Y ) = F (uX , uY )
and

νX,Y ◦ mF (T X,Y ) = F (X, mY ) ◦ νX,T Y ◦ TνT X,Y ◦ T 2F (mX , Y ).
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