

Everybody knows what a normal gabi-algebra is

Hopf Algebras and Monoidal Categories, Ferrara 2024

Paolo Saracco

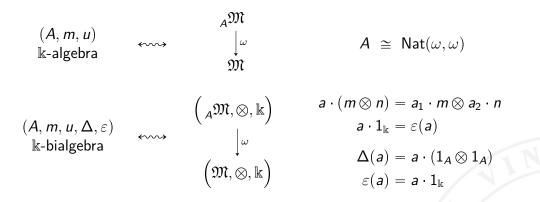
4 September 2024

- Based on Adv. Math. 451 (2024), Paper No. 109797 -

- Joint with J. Berger and J. Vercruysse, following a discussion with Gabi Böhm -

Monoidal categories and bialgebras

Let \Bbbk be a field (commutative ring), \mathfrak{M} the category of \Bbbk -modules.



There is a bijective correspondence between liftings of the monoidal structure along ω and bialgebra structures on A.

Closed monoidal categories and Hopf algebras

If A is a bialgebra, ${}_A\mathfrak{M}$ is also biclosed monoidal

$$-\otimes N \dashv [N, -] = {}_{A} \operatorname{Hom} ({}_{\bullet} A \otimes {}_{\bullet} N, -) \quad (\text{right closed})$$

$$(\mathsf{left\ closed}) \quad M \otimes - \ \dashv \ \{M, -\} \ = \ _A\mathsf{Hom} \left(_M \otimes _A, - \right)$$

There is a bijective correspondence between liftings of the right closed monoidal structure along ω and Hopf algebra structures on A.

$$\underset{A}{\operatorname{Hom}} (A \otimes N, P) \xrightarrow{\operatorname{coev}} \operatorname{Hom} (N, \underset{A}{\operatorname{Hom}} (A \otimes N, P) \otimes \Lambda$$
$$\downarrow \underset{A}{\operatorname{Hom}} (A \otimes N, P) \longleftarrow \underset{\cong}{\operatorname{Hom}} \operatorname{Hom} (N, P)$$

is induced by

$$A \otimes N \to A \otimes N$$
, $a \otimes n \mapsto a_1 \otimes a_2 \cdot n$.

There is a bijective correspondence between liftings of the biclosed monoidal structure along ω and Hopf algebra structures with bijective antipode on A.

is induced by

$$A \otimes M \to M \otimes A$$
, $a \otimes m \mapsto a_1 \cdot m \otimes a_2$.

What can we say about *A* if we lift the closed structure alone?

Definition

A skew-monoidal category is a category ${\mathcal C}$ together with

- a distinguished object 1
- a bifunctor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$
- a family $\rho_X \colon X \to X \otimes \mathbf{1}$ natural in X
- a family $\lambda_X \colon \mathbf{1} \otimes X \to X$ natural in X
- a family $\alpha_{X,Y,Z} \colon (X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z)$ natural in X, Y, Z

subject to the commutativity of 5 diagrams.

- A skew-monoidal category is called
- right normal iff $\rho_X \colon X \to X \otimes \mathbf{1}$ is a natural isomorphism
- left normal iff $\lambda_X \colon \mathbf{1} \otimes X \to X$ is a natural isomorphism
- associative normal iff $\alpha_{X,Y,Z}$: $(X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z)$ is a natural isomorphism

Definition (Street, 2013)

A skew-closed category is a category ${\mathcal C}$ together with

- a distinguished object ${f 1}$
- a bifunctor $[-,-] \colon \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathcal{C}$
- a family $i_X \colon [\mathbf{1}, X] \to X$ natural in X
- a family $j_X \colon \mathbf{1} \to [X, X]$ dinatural in X
- a family $\Gamma^Z_{X,Y}$: $[X, Y] \rightarrow [[Z, X], [Z, Y]]$ natural in X, Y and dinatural in Z

subject to the commutativity of 5 diagrams.

Example

Take *R* a k-algebra and $C = {}_R \mathfrak{M}$ with [U, V] = Hom(U, V) and $\mathbf{1} = R$.

• i_U : Hom $(R, U) \rightarrow U$, $f \mapsto f(1_R)$

•
$$j_U \colon R \to \operatorname{Hom}(U, U), \quad 1_R \mapsto \operatorname{id}_U$$

Skew-closed categories

• Morally, one should think about $\Gamma^X_{Y,Z} : [Y, Z] \rightarrow [[X, Y], [X, Z]]$ as a "post-composition map":

$$\begin{pmatrix} V & \stackrel{f}{\longrightarrow} W \end{pmatrix} \rightarrow \operatorname{Hom}\left(\operatorname{Hom}(U, V), \operatorname{Hom}(U, W)\right) \\ \left(V & \stackrel{f}{\longrightarrow} W \end{pmatrix} \rightarrow \left(\begin{pmatrix} U & \stackrel{g}{\longrightarrow} V \end{pmatrix} \mapsto \begin{pmatrix} U & \stackrel{f \circ g}{\longrightarrow} W \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & &$$

Definition A (strict) closed functor between closed categories $(\mathcal{C}, \mathbf{1}, [-, -])$ and $(\mathcal{C}', \mathbf{1}', [-, -]')$ is a functor $F : \mathcal{C} \to \mathcal{C}'$ satisfying

$$F(\mathbf{1}) = \mathbf{1}'$$
 and $F[X, Y] = [FX, FY]$

and all behaves well with respect to coherence transformations.

A skew-closed category is called

- right normal iff $i_X \colon [\mathbf{1}, X] \to X$ is a natural isomorphism,
- left normal iff

$$\mathcal{C}(X,Y) \to \mathcal{C}(\mathbf{1},[X,Y]), \qquad f \mapsto [f,Y] \circ j_Y$$

is a bijection,

associative normal iff

$$\int^{W} \mathcal{C}(X, [W, U]) \times \mathcal{C}(Y, [Z, W]) \rightarrow \mathcal{C}(X, [Y, [Z, U]])$$
$$(f, g) \mapsto \left\{ X \xrightarrow{f} [W, U] \xrightarrow{\Gamma_{W, U}^{Z}} \left[[Z, W], [Z, U] \right] \xrightarrow{[g, [Z, U]]} [Y, [Z, U]] \right\}$$

is bijective.

A closed category is a skew-closed category satisfying all the normality conditions.

Theorem (Uustalu, Veltri, Zeilberg, 2020)

Let C be a category with a distinguished object **1** and bifunctors \otimes : $C \times C \rightarrow C$ and [-, -]: $C^{\text{op}} \times C \rightarrow C$. Assume that there are adjunctions $- \otimes X \rightarrow [X, -]$, natural in X.

- Skew-monoidal structures (α, λ, ρ) on (C, ⊗, 1) are in bijection with skew-closed structures (Γ, j, i) on (C, [-, -], 1).
- The skew-monoidal structure is left/right/associative normal iff the skew-closed structure is left/right/associative normal.
- The skew-monoidal structure is associative normal iff

$$[X \otimes Y, Z] \xrightarrow{\Gamma_{X \otimes Y, Z}^{Y}} \left[[Y, X \otimes Y], [Y, Z] \right] \xrightarrow{\left[\text{coev}, [Y, Z] \right]} \left[X, [Y, Z] \right]$$

is a natural isomorphism, iff the skew-closed structure is associative normal.

Lifting the closed structure - monadic version

Theorem

Let (T, m, u) be a monad on a skew-closed category C. Then C^T is skew-closed such that the forgetful functor to C is strictly closed iff

- there is $\mu_1 \colon T\mathbf{1} \to \mathbf{1}$ in C such that $(\mathbf{1}, \mu_1) \in C^T$ and
- there is a family $s_{X,Y}$: $T[TX, Y] \rightarrow [X, TY]$ natural in X, Y

which satisfy, for all X, Y in C and (M, μ_M) in C^T ,

$$\begin{aligned} s_{X,Y} \circ u_{[TX,Y]} &= [u_X, u_Y], \\ s_{X,Y} \circ m_{[TX,Y]} &= [X, m_Y] \circ s_{X,TY} \circ Ts_{TX,Y} \circ T^2[m_X, Y], \\ Ti_X &= i_{TX} \circ s_{1,X} \circ T[\mu_1, X], \\ j_M \circ \mu_1 &= [M, \mu_M \circ m_M] \circ s_{M,TM} \circ Tj_{TM}, \\ \Gamma^M_{X,TY} \circ s_{X,Y} &= [[\mu_M, X], s_{M,Y}] \circ s_{[TM,X],[TM,Y]} \circ T[s_{M,X}, [\mu_M, Y]] \circ T\Gamma^M_{TX,Y}. \end{aligned}$$

Lifting the closed structure - monoidal version

Proposition

Let (A, m, u) be a monoid in a closed monoidal category C. Then $_AC$ is skew-closed such that the forgetful functor is strictly closed iff

- there is $\varepsilon \colon A \to 1$ in \mathcal{C} such that $(1, \varepsilon \otimes 1)$ in $_A\mathcal{C}$ and
- there is a family $t_{X,Y}$: $A \otimes X \otimes Y \rightarrow A \otimes X \otimes A \otimes Y$ natural in X, Ywhich satisfy, for all X, Y in C and (M, μ_M) in $_AC$

 $t_{X,Y} \circ (u \otimes X \otimes Y) = u \otimes X \otimes u \otimes Y,$

 $t_{X,Y} \circ (m \otimes X \otimes Y) = (m \otimes X \otimes m \otimes Y) \circ (A \otimes t_{X,A \otimes Y}) \circ t_{A \otimes X,Y},$

 $(A \otimes X \otimes \varepsilon) \circ t_{X,1} = A \otimes X,$

 $\varepsilon \otimes M = (m \otimes M) \circ t_{1,M},$

 $t_{X,Y\otimes M} = \left(A\otimes X\otimes A\otimes Y\otimes \mu_M^{\scriptscriptstyle (2)}\right)\circ \left(A\otimes X\otimes t_{Y,A\otimes M}\right)\circ t_{X\otimes A\otimes Y,M}\circ \left(t_{X,Y}\otimes M\right).$

Lifting the closed structure - algebra version

Theorem

Let A be a k-algebra. Then the skew-closed structure of $\mathfrak M$ lifts to a skew-closed structure on _A $\mathfrak M$ iff

- (\mathbf{A},ε) is an augmented \Bbbk -algebra and
- \exists an algebra map $\delta \colon A \to A \otimes A^{\mathrm{op}}$, $\delta(a) = a_+ \otimes a_-$, such that for all $a \in A$

$$a_+\varepsilon(a_-) = a,$$
 $a_+a_- = \varepsilon(a)\mathbf{1}_A,$
 $a_{++}\otimes a_{-+}\otimes a_{--}a_{+-} = a_+\otimes a_-\otimes \mathbf{1}.$

In this case, A acts on Hom (M, N) as

 $(\mathbf{a}.f)(\mathbf{m}) = \mathbf{a}_+ f(\mathbf{a}_- \mathbf{m}).$

Definition

Such an algebra will be called a gabi-algebra.

Example (Hopf algebras)

Any Hopf algebra H is a gabi-algebra with $\delta(h) = h_1 \otimes S(h_2)$. The category $_H\mathfrak{M}$ is a closed monoidal category with closed monoidal forgetful functor.

Example (One-sided Hopf algebras – Green, Nichols, Taft, 1980) A right Hopf algebra is a bialgebra B in which id_B has a right convolution inverse. A right Hopf algebra whose right antipode is an anti-bialgebra map carries the structure of a gabi-algebra with respect to ε and $\delta(b) := b_1 \otimes S(b_2)$ for all $b \in B$. This skew-closed structure is not left normal, since the k-linear map

$$\beta: \mathbf{A} \otimes \mathbf{B} \to \mathbf{B} \otimes B, \qquad \mathbf{a} \otimes \mathbf{b} \mapsto \mathbf{a}_1 \otimes \mathbf{S}(\mathbf{a}_2)\mathbf{b},$$

induces an element $1_{\Bbbk} \mapsto \beta$ in $_{B}$ Hom (\Bbbk , Hom ($B \otimes B, B \otimes B$)) which does not come from an element in $_{B}$ Hom ($B \otimes B, B \otimes B$).

Gabi-algebras and skew monoidal structures

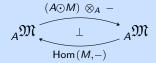
Let A be a gabi-algebra and M be a left A-module. Consider the k-module $A \otimes M$, which we turn into an A-bimodule via

 $a.(b\otimes m).c = abc_+ \otimes c_-m$.

We denote this bimodule by $A \odot M$.

Proposition

For any $M \in {}_{A}\mathfrak{M}$, there is an adjunction



The unit and counit of the adjunction are

$$\begin{split} N &\to \operatorname{Hom}\left(M, \left(A \odot M\right) \otimes_{A} N\right), \qquad n \mapsto \big\{m \mapsto (1_{A} \odot m) \otimes_{A} n\big\}, \\ (A \odot M) \otimes_{A} \operatorname{Hom}\left(M, N\right) \to N, \qquad (a \odot m) \otimes_{A} f \mapsto af(m) \;. \end{split}$$

Gabi-algebras and skew monoidal structures

Recall that any skew-closed category in which [-, -] admits a left adjoint possesses a skew-monoidal structure. Consider the bifunctor

 $\boxtimes : {}_{A}\mathfrak{M} \times {}_{A}\mathfrak{M} \to {}_{A}\mathfrak{M}, \quad M \boxtimes N = (A \odot N) \otimes_{A} M \; .$

Proposition

 \boxtimes defines a skew-monoidal structure on ${}_{A}\mathfrak{M}$, with unit \Bbbk , unitors

$$\lambda_{N} \colon \mathbb{k} \boxtimes N \to N, \quad (a \odot n) \otimes_{A} 1_{\mathbb{k}} \mapsto an,$$
$$\rho_{M} \colon M \xrightarrow{\sim} M \boxtimes \mathbb{k}, \quad m \mapsto (1_{A} \odot 1_{\mathbb{k}}) \otimes_{A} m,$$

and associator

$$\alpha_{L,M,N} \colon (L \boxtimes M) \boxtimes N \to L \boxtimes (M \boxtimes N),$$
$$(a \odot n) \otimes_A ((b \odot m) \otimes_A I) \mapsto (ab_+ \odot ((1_A \odot b_- n) \otimes_A m)) \otimes_A I.$$

Gabi-algebras and Hopf algebras

Given a gabi-algebra (A, δ, ε) define its canonical morphism to be

 $\beta \colon A \otimes A \to A \otimes A, \qquad a \otimes b \mapsto a_+ \otimes a_-b,$

and its antipode to be $\sigma(a) := \varepsilon(a_+)a_-$.

Proposition

If β is invertible and $\Delta(a) := \beta^{-1}(a \otimes 1)$ is left counital, then (A, Δ, ε) is a Hopf algebra with antipode σ .

Corollary (Commutative is Hopf)

Any commutative gabi-algebra A is a Hopf algebra with comultiplication $\Delta(a) := a_+ \otimes \sigma(a_-)$ and antipode σ .

Proposition

Let A be a finite-dimensional gabi-algebra with invertible antipode σ . Define $\Delta(a) := a_+ \otimes \sigma^{-1}(a_-)$. Then $(A, \Delta, \varepsilon, \sigma)$ is a Hopf algebra.

Proposition

Let A be a gabi-algebra over \Bbbk . Then the skew closed structure on ${}_{A}\mathfrak{M}$ is associative normal if and only if the canonical map β is invertible.

Proposition

Let A be a gabi-algebra whose β is invertible. Then the skew closed structure on ${}_{A}\mathfrak{M}$ is also left normal if and only if A is a Hopf algebra with comultiplication $\beta^{-1}(a \otimes 1)$, counit ε and antipode $\sigma(a) = \varepsilon(a_{+})a_{-}$ for all $a \in A$.

Our conclusive slogan is:

Everybody knows what a normal gabi-algebra is.

Theorem

Let A be an algebra. Then ${}_{A}\mathfrak{M}$ is a closed category with strictly closed forgetful functor ${}_{A}\mathfrak{M} \to \mathfrak{M}$ if and only if A is a Hopf algebra.

Many thanks . . .

HOPF25

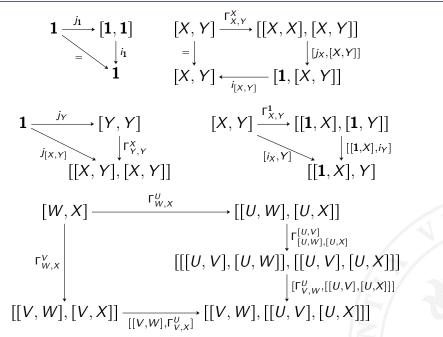
22-26 April, 2025 - Brussels

Hopf algebras, quantum groups, monoidal categories and related structures

Expression of interest (and info): hopfalgb.ulb.be/Hopf2025

- G. Böhm, Hopf algebras and their generalizations from a category theoretical point of view. Lecture Notes in Mathematics, **2226**. Springer, Cham, 2018.
- S. Eilenberg, G. Kelly, Closed categories. 1966 Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) pp. 421–562. Springer, New York.
- J. A. Green, W. D. Nichols, E. J. Taft, Left Hopf algebras, J. Algebra 65 (1980), no. 2, 399–411.
- S. Lack, R. Street, *The formal theory of monads. II.* Special volume celebrating the 70th birthday of Professor Max Kelly. J. Pure Appl. Algebra **175** (2002), no. 1-3, 243–265.
- R. Street, Skew-closed categories. J. Pure Appl. Algebra 217 (2013), no. 6, 973–988.
- R. Street, Wood fusion for magmal comonads. Preprint, arXiv:2311.07088, 2023.
- T. Uustalu, N. Veltri, N. Zeilberger, *Eilenberg-Kelly reloaded*. The 36th Mathematical Foundations of Programming Semantics Conference, 2020, 233–256, Electron. Notes Theor. Comput. Sci., 352, Elsevier Sci. B. V., Amsterdam, 2020.
- R.J. Wood, Coalgebras for closed comonads. Commun. Algebra 6 (1978) 1497–1504.

Axioms of a skew-closed category



Axioms of a skew-monoidal category

