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Monoidal categories and bialgebras

Let k be a field (commutative ring), M the category of k-modules.

pA, m, uq
k-algebra ú

AM

ω
��

M

A � Natpω, ωq

pA, m, u, ∆, εq
k-bialgebra ú

�
AM,b,k

	

ω
���

M,b,k
	

a � pm b nq � a1 � m b a2 � n
a � 1k � εpaq

∆paq � a � p1A b 1Aq

εpaq � a � 1k

There is a bijective correspondence between liftings of the monoidal structure
along ω and bialgebra structures on A.
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Closed monoidal categories and Hopf algebras
If A is a bialgebra, AM is also biclosed monoidal

�bN % rN ,�s � AHom p


A b



N ,�q pright closedq

pleft closedq M b� % tM,�u � AHom p


M b



A,�q

There is a bijective correspondence between liftings of the right closed monoidal
structure along ω and Hopf algebra structures on A.

AHom pA b N , Pq coev
//

��

Hom pN , AHom pA b N , Pq b Nq
HompN,evq
��

AHom pA b N , Pq Hom pN , Pq
�

oo

is induced by

A b N Ñ A b N , a b n ÞÑ a1 b a2 � n .
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Closed monoidal categories and Hopf algebras

There is a bijective correspondence between liftings of the biclosed monoidal
structure along ω and Hopf algebra structures with bijective antipode on A.

AHom pM b A, Pq coev
//

��

Hom pM, AHom pM b A, Pq b Mq

HompM,evq
��

AHom pA b M, Pq Hom pM, Pq
�

oo

is induced by

A b M Ñ M b A, a b m ÞÑ a1 � m b a2 .
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Question

What can we say about A

if we lift the closed structure alone?
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Skew-monoidal categories

Definition
A skew-monoidal category is a category C together with

 a distinguished object 1

 a bifunctor b : C � C Ñ C

 a family ρX : X Ñ X b 1 natural in X

 a family λX : 1 b X Ñ X natural in X

 a family αX ,Y ,Z : pX b Y q b Z Ñ X b pY b Z q natural in X , Y , Z
subject to the commutativity of 5 diagrams.

A skew-monoidal category is called

 right normal iff ρX : X Ñ X b 1 is a natural isomorphism

 left normal iff λX : 1 b X Ñ X is a natural isomorphism

 associative normal iff αX ,Y ,Z : pX b Y q b Z Ñ X b pY b Z q is a natural

isomorphism
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Skew-closed categories
Definition (Street, 2013)
A skew-closed category is a category C together with

 a distinguished object 1

 a bifunctor r�,�s : Cop � C Ñ C

 a family iX : r1, X s Ñ X natural in X

 a family jX : 1 Ñ rX , X s dinatural in X

 a family ΓZ

X ,Y : rX , Y s Ñ rrZ , X s, rZ , Y ss natural in X , Y and dinatural in Z
subject to the commutativity of 5 diagrams.

Example
Take R a k-algebra and C � RM with rU , V s � Hom pU , V q and 1 � R .

 iU : Hom pR , Uq Ñ U , f ÞÑ f p1Rq


 jU : R Ñ Hom pU , Uq , 1R ÞÑ idU
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Skew-closed categories

 Morally, one should think about ΓX

Y ,Z : rY , Z s Ñ rrX , Y s, rX , Z ss as a
“post-composition map”:

ΓU
V ,W : HompV , W q Ñ Hom

�
HompU , V q, HompU , W q

	

�
V f

//W
	

ÞÑ

�
���
�

U g
// V

	
ÞÑ

�
���

U f �g
//

g
��

W

V
f

>>

�
��


�
��


Definition
A (strict) closed functor between closed categories pC, 1, r�,�sq and
pC 1, 11, r�,�s1q is a functor F : C Ñ C 1 satisfying

F p1q � 11 and F rX , Y s � rFX , FY s

and all behaves well with respect to coherence transformations.
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Normal skew-closed categories
A skew-closed category is called

 right normal iff iX : r1, X s Ñ X is a natural isomorphism,

 left normal iff

CpX , Y q Ñ Cp1, rX , Y sq, f ÞÑ rf , Y s � jY

is a bijection,

 associative normal iff

» W
C
�
X , rW , Us

�
� C

�
Y , rZ , W s

�
Ñ C

�
X , rY , rZ , Uss

�

pf , gq ÞÑ
!

X f
ÝÑ rW , Us

ΓZ
W ,U

ÝÝÝÑ
�
rZ , W s, rZ , Us

� rg ,rZ ,Uss
ÝÝÝÝÝÑ rY , rZ , Uss

)

is bijective.

A closed category is a skew-closed category satisfying all the normality conditions.
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Skew-monoidal and skew-closed categories

Theorem (Uustalu, Veltri, Zeilberg, 2020)
Let C be a category with a distinguished object 1 and bifunctors b : C � C Ñ C
and r�,�s : Cop � C Ñ C. Assume that there are adjunctions �b X % rX ,�s,
natural in X .

 Skew-monoidal structures pα, λ, ρq on pC,b,1q are in bijection with skew-closed

structures pΓ, j , iq on pC, r�,�s, 1q.

 The skew-monoidal structure is left/right/associative normal iff the skew-closed

structure is left/right/associative normal.

 The skew-monoidal structure is associative normal iff

rX b Y , Z s
ΓY

XbY ,Z
ÝÝÝÝÑ

�
rY , X b Y s, rY , Z s

� �
coev,rY ,Z s

�
ÝÝÝÝÝÝÝÑ

�
X , rY , Z s

�

is a natural isomorphism, iff the skew-closed structure is associative normal.

9 / 22



Lifting the closed structure - monadic version

Theorem
Let pT , m, uq be a monad on a skew-closed category C. Then CT is skew-closed
such that the forgetful functor to C is strictly closed iff


 there is µ1 : T1 Ñ 1 in C such that p1, µ1q P CT and


 there is a family sX ,Y : T rTX , Y s Ñ rX , TY s natural in X , Y

which satisfy, for all X , Y in C and pM, µMq in CT ,

sX ,Y � urTX ,Y s � ruX , uY s,

sX ,Y � mrTX ,Y s � rX , mY s � sX ,TY � TsTX ,Y � T 2rmX , Y s,

TiX � iTX � s1,X � T rµ1, X s,

jM � µ1 � rM, µM � mMs � sM,TM � TjTM ,

ΓM
X ,TY � sX ,Y �

�
rµM , X s, sM,Y

�
� srTM,X s,rTM,Y s � T

�
sM,X , rµM , Y s

�
� TΓM

TX ,Y .
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Lifting the closed structure - monoidal version

Proposition
Let pA, m, uq be a monoid in a closed monoidal category C. Then AC is
skew-closed such that the forgetful functor is strictly closed iff


 there is ε : A Ñ 1 in C such that p1, ε b 1q in AC and


 there is a family tX ,Y : A b X b Y Ñ A b X b A b Y natural in X , Y
which satisfy, for all X , Y in C and pM, µMq in AC

tX ,Y � pu b X b Y q � u b X b u b Y ,

tX ,Y � pm b X b Y q � pm b X b m b Y q � pA b tX ,AbY q � tAbX ,Y ,

pA b X b εq � tX ,1 � A b X,

ε b M � pm b Mq � t1,M ,

tX ,YbM �
�
A b X b A b Y b µp2q

M
�
� pA b X b tY ,AbMq � tXbAbY ,M � ptX ,Y b Mq .
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Lifting the closed structure - algebra version

Theorem
Let A be a k-algebra. Then the skew-closed structure of M lifts to a skew-closed
structure on AM iff

 pA, εq is an augmented k-algebra and

 D an algebra map δ : A Ñ A b Aop, δpaq � a� b a�, such that for all a P A

a�εpa�q � a, a�a� � εpaq1A,

a�� b a�� b a��a�� � a� b a� b 1.

In this case, A acts on Hom pM, Nq as

pa.f qpmq � a�f pa�mq.

Definition
Such an algebra will be called a gabi-algebra.
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Examples

Example (Hopf algebras)
Any Hopf algebra H is a gabi-algebra with δphq � h1 b Sph2q. The category HM
is a closed monoidal category with closed monoidal forgetful functor.

Example (One-sided Hopf algebras – Green, Nichols, Taft, 1980)
A right Hopf algebra is a bialgebra B in which idB has a right convolution inverse.
A right Hopf algebra whose right antipode is an anti-bialgebra map carries the
structure of a gabi-algebra with respect to ε and δpbq :� b1 b Spb2q for all b P B.
This skew-closed structure is not left normal, since the k-linear map

β :


B b



B Ñ



B b B, a b b ÞÑ a1 b Spa2qb,

induces an element 1k ÞÑ β in BHom pk, Hom pB b B, B b Bqq which does not
come from an element in BHom pB b B, B b Bq.
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Gabi-algebras and skew monoidal structures
Let A be a gabi-algebra and M be a left A-module. Consider the k-module AbM,
which we turn into an A-bimodule via

a.pb b mq.c � abc� b c�m .

We denote this bimodule by A d M.

Proposition
For any M P AM, there is an adjunction

AM

pAdMq bA �

))

K AM

HompM,�q

ii

The unit and counit of the adjunction are

N Ñ Hom pM, pA d Mq bA Nq , n ÞÑ
 
m ÞÑ p1A d mq bA n

(
,

pA d Mq bA Hom pM, Nq Ñ N , pa d mq bA f ÞÑ af pmq .
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Gabi-algebras and skew monoidal structures
Recall that any skew-closed category in which r�,�s admits a left adjoint
possesses a skew-monoidal structure. Consider the bifunctor

b : AM� AM Ñ AM, M b N � pA d Nq bA M .

Proposition
b defines a skew-monoidal structure on AM, with unit k, unitors

λN : kb N Ñ N , pa d nq bA 1k ÞÑ an,

ρM : M �
ÝÑ M b k, m ÞÑ p1A d 1kq bA m,

and associator

αL,M,N : pLbMqb N Ñ Lb pM b Nq,

pa d nq bA
�
pb d mq bA l

�
ÞÑ

�
ab� d

�
p1A d b�nq bA m

�	
bA l .
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Gabi-algebras and Hopf algebras
Given a gabi-algebra pA, δ, εq define its canonical morphism to be

β : A b A Ñ A b A, a b b ÞÑ a� b a�b,

and its antipode to be σpaq :� εpa�qa�.

Proposition
If β is invertible and ∆paq :� β�1pa b 1q is left counital, then pA, ∆, εq is a Hopf
algebra with antipode σ.

Corollary (Commutative is Hopf)
Any commutative gabi-algebra A is a Hopf algebra with comultiplication
∆paq :� a� b σpa�q and antipode σ.

Proposition
Let A be a finite-dimensional gabi-algebra with invertible antipode σ. Define
∆paq :� a� b σ�1pa�q. Then pA, ∆, ε, σq is a Hopf algebra.
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Gabi-algebras and normality

Proposition
Let A be a gabi-algebra over k. Then the skew closed structure on AM is
associative normal if and only if the canonical map β is invertible.

Proposition
Let A be a gabi-algebra whose β is invertible. Then the skew closed structure on
AM is also left normal if and only if A is a Hopf algebra with comultiplication
β�1pa b 1q, counit ε and antipode σpaq � εpa�qa� for all a P A.

Our conclusive slogan is:

Everybody knows what a normal gabi-algebra is.

Theorem
Let A be an algebra. Then AM is a closed category with strictly closed forgetful
functor AM Ñ M if and only if A is a Hopf algebra.
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Many thanks . . .
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Axioms of a skew-closed category

1
�

##

j1
// r1, 1s

i1
��

1

rX , Y s
ΓX

X ,Y
//

�
��

rrX , X s, rX , Y ss

rjX ,rX ,Y ss
��

rX , Y s r1, rX , Y ssirX ,Y s

oo

1
jrX ,Y s ''

jY
// rY , Y s

ΓX
Y ,Y
��

rrX , Y s, rX , Y ss

rX , Y s

riX ,Y s ((

Γ1
X ,Y
// rr1, X s, r1, Y ss

rr1,X s,iY s
��

rr1, X s, Y s

rW , X s
ΓU

W ,X
//

ΓV
W ,X

��

rrU , W s, rU , X ss
ΓrU,V s

rU,W s,rU,Xs
��

rrrU , V s, rU , W ss, rrU , V s, rU , X sss
rΓU

V ,W ,rrU,V s,rU,X sss
��

rrV , W s, rV , X ss
rrV ,W s,ΓU

V ,X s
// rrV , W s, rrU , V s, rU , X sss
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Axioms of a skew-monoidal category

1
�

$$

ρ1
// 1 b 1

λ1
��

1

X b Y
�
��

ρXbY
// pX b 1q b Y

αX ,1,Y
��

X b Y X b p1 b Y q
XbλY
oo

X b Y

XbρY ((

ρXbY
// pX b Y q b 1

αX ,Y ,1
��

X b pY b 1q

p1 b X q b Y
λXbY

��

α1,X ,Y
// 1 b pX b Y q

λXbYuu

X b Y

ppW b X q b Y q b Z
αW ,X ,YbZ

//

αWbX ,Y ,Z

��

pW b pX b Y qq b Z
αW ,XbY ,Z
��

W b ppX b Y q b Z q
WbαX ,Y ,Z
��

pW b X q b pY b Z q αW ,X ,YbZ
//W b pX b pY b Z qq
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