UNIVERSAL ENVELOPING ALGEBRAS OF LIE-RINEHART ALGEBRAS:
CROSSED PRODUCTS, CONNECTIONS, AND CURVATURE

XAVIER BEKAERT, NIELS KOWALZIG, AND PAOLO SARACCO

ABSTRACT. We extend a theorem, originally formulated by Blattner-Cohen-Montgomery for
crossed products arising from Hopf algebras weakly acting on noncommutative algebras, to the
realm of left Hopf algebroids. Our main motivation is an application to universal enveloping
algebras of projective Lie-Rinehart algebras: for any given curved (resp. flat) connection, that is,
a linear (resp. Lie-Rinehart) splitting of a Lie-Rinehart algebra extension, we provide a crossed
(resp. smash) product decomposition of the associated universal enveloping algebra, and vice
versa. As a geometric example, we describe the associative algebra generated by the invariant
vector fields on the total space of a principal bundle as a crossed product of the algebra generated
by the vertical ones and the algebra of differential operators on the base.
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INTRODUCTION

State of the art. In Lie theory, the universal enveloping algebra construction allows to construct
an associative algebra U(g) from any Lie algebra g, in such a way that the representation theory
remains unchanged. Such a construction is functorial, in the sense that it defines a functor U from
the category of Lie algebras to the category of associative algebras. The terminology “universal” is
justified by the fact that such a functor is, in fact, a left adjoint to the well-known functor that
sends every associative algebra to the Lie algebra that has the same underlying vector space and
the commutator as bracket. A natural question which arises is how this functor behaves with
respect to familiar constructions for Lie algebras, such as (semi-)direct sums or splittings of short
exact sequences.

In addition, Milnor and Moore exhibited in [MiMo] an equivalence between the category of Lie
algebras over a field k of characteristic zero and the category of cocommutative and primitively
generated Hopf algebras over k. This equivalence is induced by the same universal enveloping
algebra construction in one direction, and by considering the space of primitive elements in the
other. In light of this, Hopf algebras entered the study of Lie groups and differential geometry:
Lie groups and their representation theory can be studied in terms of their invariant vector fields
(and their representations), which however forces to work with non-associative (Lie) structures or,
equivalently, in terms of their algebras of invariant differential operators (and their representations).
This equivalent formulation allows to work in the associative setting and to take advantage of all
the tools coming from ring theory and Hopf algebra theory.

In this rich framework, classical constructions from Lie algebra theory can be equivalently
reinterpreted in terms of their universal enveloping algebras. In the present work, we will start
from the following well-known results.

(A) Let a Lie algebra g be a semi-direct sum

g=n3b
of an ideal n € g and a Lie subalgebra h < g. Then the universal enveloping algebra of g is
isomorphic to the smash product of the enveloping algebras of n and b, that is,
Ule) = Uw) #U(H)

as associative algebras.
This result is a direct consequence of the universal property of universal enveloping algebras,
but it admits the following remarkable generalisation:

(B) Let g be a Lie algebra extension of h by n, that is, a short exact sequence
0-n—>g—->h—-0 (I.1)
of Lie algebras. Then the universal enveloping algebra of g is isomorphic to the crossed product of
the universal enveloping algebras of n and b, that is,
U(g) ~U(n) = U(h) (I.2)
as associative algebras. This isomorphism defines and relies on a k-linear splitting of the short
exact sequence (I.1).

(C) Let n be a Lie subalgebra of a Lie algebra g. Then the universal enveloping algebra U(g) is
free over the universal enveloping algebra U(n) of the Lie subalgebra n. More precisely, consider
the short exact sequence (I.1) of n-modules (via the adjoint representation), where h = g/n is the
quotient module. Then, the universal enveloping algebra of g is isomorphic to the tensor product
of U(n) and the symmetric algebra S(h), that is,

Ulg) = Un) @ 5(b)
as a left U(n)-module.
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The statements (A) and (B) above appear in this form in the textbook of McConnell and
Robson [McCRo, pp. 33-34]. The statement (B) also appears in the paper [BlICoMo, Ex. 4.20]
(see also [Mo]) by Blattner, Cohen, and Montgomery, where it is shown to descend from general
results on crossed products of Hopf algebras. Finally, the statement (C) is a modern rephrasing of
a well-known result in Lie algebra theory (see [Di, Prop. 2.2.7]).

In generalising Lie algebras, a distinguished role is played by Lie-Rinehart algebras. A Lie-
Rinehart algebra over a commutative algebra A is a Lie algebra g together with additional structures
that mimic the interaction between the commutative algebra of smooth functions on a smooth
manifold M and the Lie algebra of smooth vector fields on M (i.e., the Lie derivative). In fact,
the main source of examples of Lie-Rinehart algebras is provided by the global sections of Lie
algebroids on smooth manifolds. For Lie-Rinehart algebras as well there is the notion of universal
enveloping algebra U, (g), which, in the geometric case, may be interpreted as an algebra of smooth
differential operators. An explicit construction for U, (g) was given by Rinehart himself in [Ri]
who also provided a Poincaré-Birkhoff-Witt theorem for the latter. Other equivalent constructions
appear in [Swe, §18], [Hue, p. 64], or [KaSa, §3.2]. The universal property of U,(g) as an algebra
was spelled out in [Hue, p. 64] and [Mal, p. 174] (where it is attributed to Feld’'man). Its universal
property as a left A-bialgebroid is codified in the Cartier-Milnor-Moore Theorem for ¢, (g) proven
in [MoeMr¢, §3] and its universal property as an A-ring was presented in [Sa2].

Aims and objectives. The main questions we aim to answer here are whether it is possible to
provide analogues of the results (A), (B), and (C) for Lie-Rinehart algebras and their universal
enveloping algebras, at least in the projective case. The affirmative answers to our questions above
are summarised in the following results (see the main text for details and notation).

Theorem (Theorem 3.10, Corollary 3.11, and Theorem 3.16). If0 —n <> g 5 h — 0 is a short
ezact sequence of Lie-Rinehart algebras which are projective as left A-modules, then we have an
isomorphism
Ua(g) = Ua(n) #: Ua(h)

of A-rings and right U,(h)-comodule algebras, where o is a suitable U, (n)-valued Hopf 2-cocycle
and #, denotes the corresponding crossed product. In particular:

(A) If g ~n 3 b is a semi-direct sum of an A-Lie algebra (A,n) and a Lie-Rinehart algebra (A, b),

then we have an isomorphism

Us(n 3 h) = Ua(n) #UA(h)

of A-rings and right U, (h)-comodule algebras.
(B) If g ~n 3, b is a curved semi-direct sum of an A-Lie algebra (A, n) and a Lie-Rinehart algebra
(A, ) for a Lie 2-cocycle T, then for a suitable Hopf 2-cocycle o we have an isomorphism

Us(n 37 h) > Us(n) #, Ua(D)
of A-rings and right U,(h)-comodule algebras. o

Proposition (Proposition 1.15). (C) Let n € g be an inclusion of Lie-Rinehart algebras which
are projective as left A-modules. Suppose that the quotient A-module h = g/n is projective as well.
Then we have an isomorphism

Ua(g) = Ua(n) ®4 Sa(h)
as left U,(n)-modules. In particular, U,(g) is projective over U, (n). o
The statements in the theorem above follow as applications of the construction of the symmetri-
sation map in §1.5 and of the main theorem of the present paper (see again the main text for
notation and details), which reads as follows:

Theorem (Theorem 2.9). Let (U, A) and (V, A) be two left Hopf algebroids over the same base

algebra A and let U 5 V — 0 be an exact sequence of left Hopf algebroids which splits as an
A-coring sequence, that is, there exists a morphism ~v: V — U of A-corings such that m o~y = id, .
Assume furthermore that Uy is projective as an A-module and that

1) =1y,  Alarv)=ary), A(v<a)=7(v)<a, VveV,acA
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Let B be the left Hopf kernel of w. Then there exists a B-valued Hopf 2-cocycle o: U @qop Uy — B
such that B becomes a o-twisted left V-module with respect to the weak left V-action v b =
yW)L by(v)_ for allveV, be B, and there is an isomorphism

O: B#,V ->U, b#ve by(v)
of A°-rings and of right V-comodule algebras. o

A geometric motivation for the extension of (A) and (B) from Lie algebras to Lie-Rinehart
algebras is that the above two situations in the Lie algebroid case correspond, respectively, to
flat or curved connections on a transitive Lie algebroid (for instance, on the Atiyah algebroid
of a principal bundle). A corollary of our result is that an invariant Ehresmann connection on
a principal bundle provides a factorisation of the associative algebra generated by the invariant
vector fields on the total space as a smash or crossed product of the algebra generated by the
vertical ones and the algebra of differential operators on the base manifold. The extension of the
result (C) to Lie-Rinehart algebras is motivated geometrically by its application to foliations.

In addition, we provide the following alternative description of the (crossed) product #, as the
product x, (which involves a Lie cocycle 7 instead of a Hopf cocycle o).

Theorem (Theorem 3.19). Let v: A — R be an A-algebra and (A,h) a Lie-Rinehart algebra
such that both R and by are projective as left A-modules. Then for an A-ring S the following are
equivalent:

(i) S~ R x;UA(h) in the sense of Definition 3.18 where T denotes a Lie cocycle.
(it) S =~ R#,U,(h) in the sense of Definition 2./ where o denotes a Hopf cocycle. o

This latter result extends the equivalent descriptions of crossed product factorisations in [Mo]
to the realm of Lie-Rinehart algebras.

Outline. The plan of the paper is as follows: In §1, we summarise the main notions and results
concerning Lie-Rinehart algebras and their universal enveloping algebras, with the intention of
keeping the presentation as self-contained as possible. Both §1.5, where we exhibit a Lie-Rinehart
analogue of the well-known symmetrisation map, and §1.8, where we prove our first decomposition
theorem (Proposition 1.23), are of particular relevance for their novelty, whereas §2 is entirely
devoted to proving our main theorem, i.e., Theorem 2.9. In §3, we apply this theorem to the cases
of interest for the study of Lie-Rinehart algebras: the crossed product decomposition result of
Theorem 3.10 and the smash product decomposition result of Theorem 3.16. Finally, we conclude
by concrete geometric applications of our achievements in §4. Appendix A contains the technical
details of some proofs omitted from the main body, to avoid making the discussion unnecessarily
heavy.

1. PRELIMINARIES AND FIRST RESULTS

We work over a ground field k of characteristic 0. All vector spaces and algebras are assumed
to be over k. The unadorned tensor product ® stands for ®y. Identity morphisms id, are often
denoted simply by V. Lie algebras will be denoted by Gothic letters. Unless stated otherwise,
an algebra A is always assumed to be associative and unital. The Lie algebra associated to A,
denoted by 2l (or simply A again), is the Lie algebra with A itself as underlying k-vector space
and bracket given by the commutator [a,b] = ab — ba for all a,b € A. If A is noncommutative, A°P
denotes its opposite algebra and A° := A ® A°P its enveloping algebra.

An A-ring is a k-algebra R together with a morphism of k-algebras ¢: A — R. This endows
R with the A-bimodule structure a - r - b = ¢(a)r ¢(b) for all a,b € A, r € R. Equivalently, an
A-ring is a monoid in the monoidal category (,Mod,,®.,, A) of A-bimodules. An A-algebra over a
commutative algebra A is an A-ring (R, ¢) such that the image of ¢ is in the center Z(R) of R or,
equivalently, a monoid in the monoidal category (,Mod, ®,4, A) of A-modules.

Dually, an A-coring is a comonoid in the monoidal category (,Mod,,®,, A), that is, an A-
bimodule C together with a comultiplication A.: C - C ®, C and a counit ¢.: C — A such
that

(Ac®.C)oAr = (C®aAc)0 A, and (e ®aC)oAp =ide = (C®acec) o0 Ac.
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Similarly, an A-coalgebra over a commutative algebra A is a comonoid in (,Mod,®,, A). For a
coalgebra or a coring, we usually adopt the Heyneman-Sweedler notation

Ac(e) = c1) ®a c(2)

(summation understood) to explicitly describe the comultiplication. When there is no risk of
confusion, we often write simply A and ¢ instead of A. and e.

1.1. Lie-Rinehart algebras. Let us fix a commutative algebra A over a field k. A Lie-Rinehart
algebra over A (so baptised in [Hue] to honour Rinehart who studied them in [Ri]) is a Lie algebra
g endowed with a (left) A-module structure AQ g — g, a ® X — a- X, and with a Lie algebra
morphism wy: g — dery(A) such that

wg(a-X) =a- wy(X) and [X,a-Y]=a-[X,Y]+ (wg(X)(a)) - Y

for all @ € A and X,Y € g. The Lie algebra morphism wy with the above property is called the
anchor of the Lie-Rinehart algebra. We often write w instead of wy and X (a) instead of wq(X)(a)
for X € g and a € A, if this does not create confusion.

A morphism of Lie-Rinehart algebras over the same base A is a Lie algebra morphism f: g — ¢
which is left A-linear and such that w’ o f = w.

A Lie-Rinehart algebra typically will be written as (A, g,w). We may also write (A, g) or just g
when A or w are clear from the context or irrelevant, and likewise we may simply write f: g — ¢
to mean a morphism of Lie-Rinehart algebras.

Example 1.1 (Lie algebroid). The smooth global sections of a Lie algebroid over a real smooth
manifold M naturally form a Lie-Rinehart algebra over C* (M) (see, e.g., [Mac2, p. 101], where
Lie-Rinehart algebras are called Lie pseudoalgebras). In particular, the smooth vector fields on
M give rise to the Lie-Rinehart algebra X(M) := detg (C*(M)) ~ I'(TM) whose anchor is the
identity. [

Definition 1.2 (Lie-Rinehart ideal). An A-Lie algebra is a Lie-Rinehart algebra over A with
trivial anchor. A Lie-Rinehart ideal n of a Lie-Rinehart algebra g over A is an A-Lie algebra which
is a Lie ideal n C g.

Ezample 1.3 (Kernel of a Lie-Rinehart algebra morphism). The kernel n = ker f of a morphism
f: g — b of Lie-Rinehart algebras from g to b is a Lie-Rinehart ideal n € g. [

From now on, all Lie-Rinehart algebras are assumed to be over A. By a short exact sequence
0-nsbg5Sh—o0 (1.1)
of Lie-Rinehart algebras we mean a short exact sequence of morphisms of A-modules which are also
morphisms of Lie algebras and that are compatible with the anchors as above. The latter condition
implies, in particular, that the anchor of n needs to be zero (that is, n is an A-Lie algebra). We will
often assume, in addition, that our Lie-Rinehart algebras are projective as (left) A-modules, which

we may refer to as projective Lie-Rinehart algebras. This, in particular, implies that 7: g — b
admits a section v: h — g as left A-linear map.

1.2. Lie-Rinehart actions, connections, and curvature. Let (4,h,w) be a Lie-Rinehart
algebra with anchor w: § — dery(A).

Definition 1.4 (Representations of Lie-Rinehart algebras [Hue, p. 62]). A representation (or
action) of a Lie-Rinehart algebra (A,h,w) on a left A-module N is a Lie algebra morphism
p: b — gl (V) such that
pla- X)) =a-p(X)(n) and  p(X)(a-n) =w(X)@) nta-p(X)n)  (12)
forall X e h, ne€ N, a € A. Equivalently, N has a left h-action h@ N - N, X ® n — X (n), such
that
(a-X)(n)=a-X(n) and X(a-n)=X(a) n+a-X(n) (1.3)
hold for all X € h, ne N and a € A. We refer to N as a left (A, h)-module or Lie-Rinehart module.
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For the sake of simplicity, in the future we may omit the - symbol for the actions. For an
(A,h)-module N, we call Hom, (A% h, N) the space of alternating N-valued A-multilinear forms,
which yields a cochain complex (Hom,(A%bh,N),d), where

d: Hom,, (A1h, N') — Hom, (A5, N)
is the de Rham-Chevalley-Filenberg-Rinehart differential

n+1

do(Xt,.. . X" = 3 (=1) X7 (a(xl,,..,)%i,...,x"“))
i=1 (1.4)
+ Zl(—l)”ja([Xi,XjLXﬂ c XX X,
1<)

and where, as usual, X’ means omission of X’ € b, see [Ri, Eq. (4.3)].

More generally, if we have an assignment h ® N — N which is not necessarily a left h-action
but which still obeys (1.2), or equivalently a map p: h — gl (N) which is not necessarily a Lie
algebra morphism but still fulfilling (1.3), then we call this a left (A, §)-connection on N, following
[Hue, p. 70f.]. A Lie-Rinehart module structure would then be a flat connection. We rewrite this
by using the adjoint

V: N — Hom,(h, N), n—{X — p(X)(n)},
of p and hence the properties (1.2) turn into the customary formulee
Vexn=aVxn, Vx(an) = X(a)n+aVxn, (1.5)

for all X e h, ne N and a € A, well-known in differential geometry for a linear connection on a
vector bundle. In such a case, the formula (1.4) for d still makes sense if changing the notation from
X(-) to Vx(-) in the first summand of the right hand side. The only difference is, in general, that
d? # 0, whence it is not a differential any more. To indicate this situation of a non-flat connection,
we denote the left-hand side of (1.4) by D« (instead of da) and call this the exterior covariant
derivative on Hom ,(/\"h, N). Even if (Hom,(/%bh,N), D) does not define a cochain complex
for a non-flat connection, we will nevertheless refer to elements in Hom , ( A%h, V) as cochains and
as cocycles to those elements o € Hom , (A% h, V) that fulfil Do = 0.
The curvature Q: N\’ — gl (N) is the adjoint of D?: N — Hom,,(A*h, N), which leads to
the familiar expression
AUX,Y)=VxVy —VyVx = Vix,y) (1.6)

for X,Y € b, and the connection is flat as above if and only if its curvature vanishes.

1.3. Curved semi-direct sum of Lie-Rinehart algebras. Assume now that (4,n,0) is a
Lie-Rinehart algebra with trivial anchor, that is, n is an A-Lie algebra. Furthermore, assume
that there is a left (A, h)-connection V: n — Hom,(h,n) on the A-module n by means of a map
p: b — derg(n) c gl (n) and assume that the curvature Q of V is given by

QUX,Y) = [1(X,Y), —]n, (1.7)

where 7 € Hom,, ( /\i h,n) is a 2-form which is closed with respect to the exterior covariant
derivative, that is, D7 = 0.

Proposition 1.5. If the aforementioned assumptions are met with respect to a Lie-Rinehart algebra
(A, b,wy) and a Lie-Rinehart algebra (A,n,0) with trivial anchor, then the A-module n @Y can be
made into a Lie-Rinehart algebra with anchor

w:n@bh —veri(A4),  (n, X) — wy(X),
and Lie bracket
[(n, X), (m, )] == ([n,m] + Vxm = Vyn+7(X,Y),[X,Y]) (1.8)
forn,men and X,Y €.

The proof is straightforward and left to the reader. For the case of Lie algebroids, see [Macl,
Thm. 3.20] or [Mac2, Thm. 7.3.7]. Taking 7 = 0, we obtain:
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Corollary 1.6. Assume that we have a left action (a flat left connection) of a Lie-Rinehart algebra
(A,h) on an A-Lie algebra (A,n), that is, assume a Lie algebra morphism p: h — dery(n) is given
such that Egs. (1.2) hold. Then the A-module n @Y has the structure of a Lie-Rinehart algebra
over A given by the anchor

wo (1, X) (a) = wy(X)(a)
and the Lie bracket

[(n, X)), (m, V)], = ([n,m] + p(X)(m) = p(Y)(n), [X, Y])
forall X, Y eh,n,men, and a e A.

Definition 1.7. We call the Lie-Rinehart algebra from Proposition 1.5 the curved semi-direct
sum of (A,n) and (A, h) and we denote it by (A,n 3, h). Likewise, the Lie-Rinehart algebra of
Corollary 1.6 is called the semi-direct sum Lie-Rinehart algebra of (A,n) and (A, ) and denote it
by (A,n 3 bh).

This definition of semi-direct sum coincides with the one provided in [CaLaPi, §2.2]. The
following characterisations of (curved) semi-direct sums should sound familiar.

Proposition 1.8. Let (A,n,0) be an A-Lie algebra and let (A, g,wy) as well as (A, h,wy) be
Lie-Rinehart algebras. Then the following are equivalent:
(C1) There is a connection p: h — derg(n) of h on n and an isomorphism n 3, b ~ g of Lie-
Rinehart algebras;
(C2) n is a Lie-Rinehart ideal in g and by is an A-submodule of g such that wg |, = wy and g = n+1b,
along withnnh =0 as well as [X,Y ]y — [X, Y]y en for all X,Y € b;
(C3) there is a short exact sequence of Lie-Rinehart algebras
0->nb g N h—0
such that m admits a left A-linear section.
Furthermore, the following are equivalent as well:

(S1) There is an action (a flat connection) p: h — derg(n) of h onn and an isomorphismn » h ~ g
of Lie-Rinehart algebras;

(52) n is an A-submodule and a Lie ideal in g and Y is a Lie-Rinehart subalgebra of g such that
g=n+handnnh=0;

(53) there is a short exact sequence of Lie-Rinehart algebras
such that m admits a left A-linear section which is also a morphisms of Lie algebras.

In any of the above cases, the section vy of ™ satisfies wg 0y = wy.

Proof. We briefly sketch the proof and leave the straightforward details to the interested reader.

(C1) = (C2): the assignments
on:n—ond b, n— (n,0) and pwp:h—>un3d:h X (0,X)

realise n as a Lie-Rinehart ideal and h as an A-submodule of n 3. b satisfying the given conditions.
(C2) = (C3): the hypotheses entail that g = n@® b as A-modules. Thus, the desired short exact
sequence of Lie-Rinehart algebras is provided by the (split) short exact sequence of A-modules

0*>n$n®b$h*>0.
The only non-trivial check consists in observing that wy(n) = 0 for all n € n. In fact, we have that
[aX,n]g = a[X,n]g — wy(n)(a)X € g

for all X € h and a € A, and since [aX,n]y,a[X,n]g € n (because it is a Lie ideal and an A-
submodule) and since wy(n)(a)X € h (because it is an A-submodule), the hypotheses g = n + §
and n n b = 0 imply that wg(n) =0 for all n € n.
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(C3) = (C1): let v: h — g be a section of 7 as a left A-linear map. If we consider the left
A-linear map
p:h—oeri(n), X [y(X),—]
and the alternating A-bilinear form
Tihxhon, (XY) e [y(X), (V)] = ([X Y]p),

g

then the data (h,n, p, 7) satisfy the conditions of Proposition 1.5 and hence we may form n 3, b.
The natural left A-linear isomorphism

Y:in®bh—g, (0, X) > n+y(X),

then turns into an isomorphism % : n 3, h — g of Lie-Rinehart algebras over A.
The proof of the equivalence between (S1), (S2), and (S3) follows the same lines. O

1.4. Universal enveloping algebras. The universal enveloping algebra of a Lie-Rinehart algebra
(A,h,w) is a k-algebra U,(h) endowed with a morphism t,: A — U,(h) of k-algebras and a
morphism ¢y : h — U, (h) of Lie algebras over k such that

w(aX) = ta(a) ty(X) and  1p(X)ea(a) — va(a) ty(X) = ta(w(X)(a)) (1.9)
for all @ € A and X € b, which is universal with respect to this property. This means that
if (U, P4, Py) is another k-algebra with a morphism ¢,: A — U of k-algebras and a morphism
¢p: b — U of k-Lie algebras such that

¢y(aX) = da(a) ¢y(X) and  ¢y(X) ¢a(a) — dala) by (X) = ¢4 (w(X)(a)),  (1.10)
then there exists a unique k-algebra morphism ®: U, (h) — U such that P o, = ¢, and
® oy = ¢y. Informally speaking, the universal enveloping algebra is designed in order to have
a bijective correspondence (in fact, an isomorphism of categories) between (A, h)-module and
U (h)-module structures on an A-module N.

Remark 1.9. The above universal property can be stated more compactly as follows. For an A-ring
(Ra ¢A)a set

LA(R) = {(r,0) € R x dery(A) | [r,64(a)] = ¢.((a)) for all a € A}.

This is a Lie-Rinehart algebra over A with anchor given by the projection on dery(A), and
with component-wise bracket and A-action. In this setting, U, (h) is an A-ring endowed with a
morphism j5: h — L, (U, (h)) of Lie-Rinehart algebras such that if (R, ¢y) is another A-ring with
a morphism ¢y : h — L,(R) of Lie-Rinehart algebras, then there exists a unique A-ring morphism
®: U, (h) — R such that £,(P) o gy = ¢y. See [Sa2, §3] for more details. |

Apart from the well-known constructions of [Ri] and [Hue], the universal enveloping algebra of
a Lie-Rinehart algebra (A, b, w) admits other (equivalent) realisations. For instance, the following
one (which is coming from [KaSa]) resembles closely the classical construction of the universal
enveloping algebra of a Lie algebra. Set n: h - h® A, X — X ®1,, and consider the tensor A-ring
T,(h ® A) on the A-bimodule h ® A, that is,
T.(h®A) =A@ (@)@ (He4)®. (1®4) ®... = D(HOA)®".

n=0

It can be shown that U, (h) ~ T, (h ® A) /T, where the two-sided ideal 7 is given by

1(X) ®@an(Y) —n(Y) @4 n(X) —n([X,Y]), | X,Y €b,

n(X)a — an(X) — w(X)(a) aeA
We have an algebra morphism ¢,: A — U,(h),a — a + J, and a Lie algebra map ty: h —
Us(h), X — n(X)+ J, that satisfy the compatibility condition (1.9). Since an A-Lie algebra n
is equivalent to a Lie-Rinehart algebra over A with zero anchor, a similar construction holds for

A-Lie algebras. Observe that in this latter case, the relation n(X)a +J = an(X) +J forallae A
and X € n entails that

XQa+T=X®)a+T=nX)a+T=an(X)+ T =a(X@1)+J =(aX)®1+ T,
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and hence the foregoing construction is isomorphic to the ordinary universal enveloping algebra
U,(n) of an A-Lie algebra.

In what follows, we will often assume that h is a projective left A-module so that the
Poincaré-Birkhoff-Witt (PBW) theorem holds, that is to say, gr(¢.(h)) =~ Sa(h) as commu-
tative A-algebras (see [Ri, §3]). As a consequence, we will identify A and h with their images in
U.(h), that is to say, we will often omit to write explicitly ¢4 or ¢p.

Remark 1.10. The universal enveloping algebra U, (h) of a Lie-Rinehart algebra § is naturally an
A-coalgebra with respect to the left A-module structure au := v ,(a)u for all a € A, u € U,(h), and
with comultiplication and counit uniquely determined by

Ala) =a®.1, A(Xy---X,) = Z Xoy Xo) ®a Xot11) " Xo(n)s
o
gla) =a and e(X1---Xpn)=0
for all a € A and X;,...,X,, € h, where W, ,,_, are the (¢,n — t)-shuffles. For instance,
AX)=X®,1+1®,X and AXY)=XY®,1+X®,YV+Y®, X+1®, XY (1.11)
for X,Y €b. u

1.5. A symmetrisation map. Let (4, g,w) be a Lie-Rinehart algebra which is projective as a
left A-module and let {x;,®; | i € I} be a projective basis for g, where {x; | ¢ € I} stands for a
generating set of g, while the {; | ¢ € I'} are the corresponding A-linear forms in g* = ,Hom(g, A).
Consider g as an A-bimodule with right A-action induced by the left one. In this way, we may
consider the symmetric algebra S,(g) over A, and it is easily seen that for all k£ > 1,

Sk: Sk(9) > Ua(@<k,  Xi Ko 5D, 00 (X)) 05 (Xi) Xioy Ny (112)

J1seeJR€L
ceS

is a well-defined morphism of A-bimodules, where the A-bimodule structure on the codomain is
coming from the left A-module structure. For instance, S; = t4: Si(g) = g — Ua(g)<1 and

Se: X @4 Y > 5 Y 0i(X)e; (V) (xixs + XiXs) (1.13)
i,jel
for X,Y € g. Together with Sg: S%(g) = A = A = U,(g)<o, the morphisms (1.12) induce an
A-bilinear morphism
S: Salg) — Ua(), (1.14)
which plays the réle of the well-known symmetrisation map (if A =k, the base field, this s the
usual symmetrisation map). We prove now that S is, in fact, an isomorphism of A-corings.

Remark 1.11. We can always rewrite the sum in (1.12) as

Z P (Xl) s P (Xk) Xioy =" Xdo(r)

J1s-5Jk
oeSy,

D02 Piew (Ke) i (KXow) Xivay * Xiow (1.15)

€S Jo(1)s-1Jo(k)

Z Z eir (Xo) = @i (Xok) Xo1 Xius

0€GK Ji,--Jk

where we used that A is commutative (hence ¢j, (X1) - 9;, (Xx) = @5, (Xo) - @i, 0 (Xo(r))
for any permutation o € &) for the first equality and that the indices j,,,’s in the summation are
dummy for the second one. [

Lemma 1.12. Let (A, g,w) be a Lie-Rinehart algebra which is projective as a left A-module. The
morphism S: S,(g) — Ua(g) of (1.14) is an isomorphism of A-bimodules, where the bimodule
structure on S,(g) is the one induced by the A-algebra structure and the A-bimodule structure on
UA(g) is the one induced by the left A-module structure.
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Proof. Consider U,(g) as a Z-filtered left A-module via

F(Us(0) = {E’A(gk” "

Analogously, consider S,(g) as a Z-filtered left A-module with filtration induced by the graduation

P Sh(a) n=0,
k=
0 n < 0.

Notice that both filtrations, the one on U,(g) and the one on S,(g), are separated (that is to
say, the intersection (), Fn is 0), exhaustive (that is to say, the union J,,., F5, is the whole
A-module), and discrete (that is to say, F,, = 0 for all n < 0). In particular, both of them are
complete filtered A-modules (see [NaOy, Ch. D, §I & §II]). Moreover, by construction, S is a
filtered morphism of filtered left A-modules and if we consider the graded associated gr(S), then it
satisfies

r, (S
Sh(g) ~ gri(Sa(9)) LECN gre (Ua(9)), X1 X Xy X + UL () <kt

for all k£ > 0, and 0 elsewhere. That is to say, gr(S) is the isomorphism of the PBW theorem. Then
S is an isomorphism of A-bimodules, in view of [NdOy, Ch. D, Cor. IIL.5]. O

Theorem 1.13. Let (A, g,w) be a Lie-Rinehart algebra which is projective as left A-module. The
morphism S: S4(g) — U(g) of (1.14) is an isomorphism of A-corings.

For the sake of readability, the full proof is postponed to §A.2. Here below, we only explicitly
show the comultiplicativity of S on a homogeneous element of degree 2. The general case is not
different.

FEzample 1.14. For all X,Y € g we have

Ay (S(XY)) L %Z @i (X)p; (V) Au (xix; + XiXi)

4,3

1.11 ]-
tay 52%(){)%‘(}/)((%)@ +XXi) ®a 1 +2Xi ®a xj +2X5 ®a Xi + 1 ®a (XiXy +Xin))
1.7

CLUS(XY)@a 1+ X @, Y +Y @4 X +1®, S(XY)

S(XY) ®.4 S(1) + S(X) @, S(Y) + S(Y) ®4 S(X) + S(1) @4 S(XY)
(S®. S)(As(XY)). n

Following Theorem 1.13, the forthcoming proposition answers our question (C) by providing a
Lie-Rinehart analogue of the well-known fact that a universal enveloping algebra is always free
over any universal enveloping subalgebra (see [Di, Prop. 2.2.7]).

Proposition 1.15. Let h S g be an inclusion of Lie-Rinehart algebras which are projective as
left A-modules. Suppose that the quotient A-module g/h is projective, too. Then we have an
isomorphism

Ui(g) = U.(h) ®4 Salg/h)
as left U,(h)-modules. In particular, U,(g) is projective over U, (h).

Proof. Denote by ¢: h € g the inclusion. By the standing hypotheses, we may fix a left A-linear

section o: g/h — g of the canonical projection 7: g — g/h and we have that g ~ h @ g/h as left
A-modules. Notice that

Si(b@g/h) =~ Sa(h) ®4 Sa(g/h)

as A-algebras via the unique morphism

Sa(h) ®4 Salg/b) = Sa(b @ g/h)
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induced by the canonical maps h — h @ g/ < g/bh and the universal property of the coproduct
S4(h) ®4 Sa(g/h) applied to the resulting A-algebra morphisms

Sa(h) > Sa(b@g/b)  and  Sa(g/h) > Sa(h@g/h).
Therefore, the A-algebra morphisms

Sa(t): Sa(h) — Sa(g) and Sa(0): Sa(g/h) — Salo)

induce an isomorphism of graded A-modules (in fact, A-algebras)

SA(b) ®a SA(g/b) B SA(Q)»

1.1
U Up @ (K1) 1(Xn) o U1 (U)o (X1) - - om(Xo) (1.16)
with explicit inverse uniquely determined by
Sa(g9) = Sa(h) ®a Sa(a/h), X = (X —on(X)) @41+ 1@, 7(X).
In this setting, consider the composition
Ua(L)®a(SgoSa(o
0: U () ®, S (g/h) — 22Dy (0) @, Un(e) > Uale),  (117)

where the right-most arrow is simply the multiplication in ¢/, (g) and the tensor product over A in
the domain U, (h) ®4 Sa(g/h) is taken with respect to the regular right A-module structure U, (h)
on U, (h) and the regular left A-module structure on S,(g/h). This is a filtered morphism with
respect to the filtration

Fn (UA(b) ®a SA(g/b)) = Z (Fh (uA(b)) &4 Fk (SA(Q/h)))
h+k=n

on the domain and the primitive filtration on the codomain. Since gr; (U4(h)) =~ Sk(h) and
gr, (S.(g/h)) = S"(g/h) are projective A-bimodules for all h,k > 0 (where, as usual, the A-
bimodule structure is the symmetric one induced by the left A-module structure), it follows that
the canonical morphism

gr( A(h)) ®a gr(SA(g/b)) - gr( 4(h) ®a 8A(9/h))7
(w+ Fn(a(5))) ®a (s + Fi(Sa(9/)) > u®a s+ Fuyrrr(Ua(h) @ Sa(g/h))
is an isomorphism of graded A-bimodules. This is a consequence of, for example, [Maj, Thm. C.24,
p. 93], or one may adapt directly [Sal, Lem. 1.1] or [KaSa, Appendix B.3]). The graded morphism
associated to the composition (1.17) is exactly the isomorphism (1.16), up to the last isomorphism.
Since the filtrations on U, (h) ®4 S.(g/h) and U, (g) are discrete (that is, there exists ng € Z such
that F; = 0 for all i < ng) and exhaustive (the union of all the terms give the entire bimodule),
they are separated and complete and hence [NaOy, Ch. D, Cor. IIL.5] implies that (1.17) is an

isomorphism of A-bimodules. It is clearly left 2, (h)-linear. The final claim follows from the fact
that S.(g/h) is a projective left A-module. O

Ezxample 1.16. For the sake of having a concrete instance of the final argument of the proof of
Proposition 1.15, consider the element UV ®,7(X)7(Y) in S4(h)®4S4(g/h). Then the composition

Sa(0) @4 Sale/h) = gr(Ua(h)) @ gr(Sala/h)) = gr (Ua(h) @ Sale/h) s gr (Ua(n)) = Salo)
acts on UV ®, m(X)7(Y) as
UV @um(X)m(Y) > (UV + Fy (u (1)) ®a (7(X)7(Y) + Fi(Sala/h)))
> (UV @4 m(X)m(Y)) + Fs(Ua(h) ®a Salg/h))
o U OV (S eilom(X))es(om(V) (xins + x5x1)) + Fi (ts (0)
i,j€l
(U)(V)or(X)on(Y) + F3 (UA(g))
(U)(V)or(X)on(Y). |

!



12 X. BEKAERT, N. KOWALZIG, AND P. SARACCO

Remark 1.17. (a) By using a right-hand analogue of the symmetrisation map S, one can prove a
variation on Proposition 1.15, providing an isomorphism of right ¢/, (h)-modules of the form

Ua(g) =~ Sala/h) ®a UA(D),
allowing to conclude

Ua(g) /U(g) b =~ Sa(g/b) (1.18)

as left A-modules. For details on the isomorphism (1.18) (and its analogue for universal
enveloping algebras of ordinary Lie algebras) and its geometric implications see [Cq, CqCdTu].
(b) Observe that another A-coring isomorphism S,(g) — U,(g) is provided by the pbw map of
[LaStXu], but the symmetrisation map S does not coincide with it, in general. ]

1.6. Left bialgebroids. First introduced in [Ta], left bialgebroids (also known as x ,-bialgebras) are
a generalisation of k-bialgebras to bialgebra objects over a noncommutative base ring A, consisting
of compatible A°-ring and A-coring structures on the same k-vector space U. In particular, to
define a left bialgebroid (U, 4, A, ¢, s,t), or (U, A) for short, one starts with a ring homomorphism
s: A - U (called the source) and a ring anti-homomorphism ¢: A — U (called the target) which
commute, in the sense that s(a)t(b) = t(b)s(a) for all a,b € A. These induce four commuting
A-module structures on U, denoted by

arbru<cad:=t(c)s(b)us(d)t(a) (1.19)

for u e U, a,b,c,d € A, which we abbreviate by ,.Us., depending on the relevant action(s) in a
specific situation. For example, the tensor product U, ®, .U has to be understood as

Us®4 U =U®U/span{t(a)u@v — u® s(a)v, Yu,v e U,Va e A}.
Next, one introduces a counit ¢: U — A subject to
e(bru<c)=be(u)c, elaru)=c(u<a), e(w)=c(u<e(®))=c(e(v)ru), (1.20)

that is, which is linear only with respect to the “white” A-actions and defines on A the structure of
a U-module by means of the “black” ones, and which in particular is not a morphism of algebras,
in striking contrast to the bialgebra case. Moreover, apart from the multiplication m,, one also
has a coassociative comultiplication

AU - Us ®4:U, ue ug) Qa w2y,
that corestricts to the Sweedler-Takeuchi product
Ux,U:= {Ziui(@vi €U, ®.,U | 2 aru; vy = Y ,u; ®u; < a, VaEA} cC U, ®,,U,

which is an A°-ring via factor-wise multiplication. The Sweedler-Takeuchi product allows to express
the desired compatibility between product and coproduct in a well-defined sense:

A(uv) = A(uw)A(v), Alarbru<ced) = (brugy<«d)®a (arupz <c), (1.21)
for u,v € U and a,b,c,d € A. Furthermore, usually the coproduct is asked to be counital, that is,
my o (se ®,4idy) 0 A = idy;, = myer o (idy ®,4 te) o A. (1.22)

If the rings U and A are unital, the coproduct and the counit are asked to be so as well, that is
A(ly) =1y ®4 1y and (1) = 14, (see, for instance, [BoSz, Ta]). A morphism w: (U, A) — (V, A)
of left bialgebroids over the same base algebra is a map that commutes with all structure maps in
an obvious way, that is
TrOmU:mVO(Tr®A7T)7 (7T®A7T)OAU:AVO7Ta 1.93
Ey = Ey OT, T O Sy = Sy, Toty =ty. (1.23)
For the sake of completeness, let us mention that right bialgebroids can be defined analogously
by switching the roles of black and white actions from (1.19).
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Remark 1.18. Given a left bialgebroid (U, A), any left module (M, -) over the k-algebra U inherits
an A-bimodule structure via
AQM® A — M, ad@m®a—a >maa:=s(a)t(a)m. (1.24)

In particular, given two left U-modules M, N, one may consider their tensor product M ®, N as
A-bimodules and this naturally becomes a left (U x, U)-module via

Ux,U)®@(M®4sN)— M®®, N, (Zui®Av’i)®(m®A n) '_’Zuim®A vin

and then a left U-module via restriction of scalars along the algebra morphism A: U - U x, U.
Analogously, the base algebra A is naturally a left Endy (A)-module by evaluation and then a left
U-module by restriction of scalars along the map

U — Endg (A), ur {a—c(u<a)}, (1.25)

which is an algebra morphism due to the third condition in (1.20). The category U-Mod of left
U-modules is a monoidal category in the sense of [MacL, §VIL.1], with tensor product ®, and unit
object A. -

A distinguished class of left bialgebroids is that of cocommutative left bialgebroids. A left
bialgebroid U with s = t over a commutative base algebra A is said to be a cocommutative
left bialgebroid if the comultiplication is cocommutative, that is to say, if two A = A, where
tw(z ®,4y) =y ®,4 x for all x,y € U (in fact, cocommutativity of A implies that source and target
should coincide and hence that A can be assumed to be commutative).

1.7. Left Hopf algebroids. Generalising Hopf algebras (i.e., bialgebras with an antipode or,
equivalently, whose Hopf-Galois map is invertible), given a left bialgebroid (U, A) one considers the
following map of left U-modules:

ﬂ: >U ®A°P Uq —>U< ®A >U7 U@AOpUHU(l) ®A ’U,(Q)U, (126)
called the Hopf-Galois map, where
U @uor Uqg = U ®@U/span{ut(a) ® v —u®t(a)v, Yu,ve U, Vae A}.

Then the left bialgebroid (U, A) is called a left Hopf algebroid (also known as x ,-Hopf algebra), or
simply left Hopf, if B is invertible (see [Sch2, Def. 3.5]). By adopting a kind of Sweedler notation
for the so-called translation map B71(- @4 1): U = ,U® 400 U :

Uy @ yop U_ = ,Bil(u ®4 1)

with, as usual, summation understood, one proves that for a left Hopf algebroid

g @aor u_ € U X o0 U, (1.27)

Up(1) a Uy =u®y 1 in Uy®,,U, (1.28)

U(1)4+ @aor U(1)—U2) = U@ 00 1 in ,U® o0 Uy, (1.29)

Uy (1) ®a Uy (2) Qaor U— = U(1) @ U2y Oaor Uz~ 10 Us @u 0slU ®aov Us,  (1.30)

Uy @aop U_(1) @u U_(2) = Ut 4 Raor U— @4 Uj— in U ®uor Uy ®,4 .Uy, (1.31)
(u) 4 ®uop (UV) - = UV ® gop V_U_ in W U® 400 Uy, (1.32)

usu_ = s(e(u)), (1.33)

e(u_) »usr = u, (1.34)

(s(a)t(b))+ ®aor (s(a)t(b))— = s(a) ®aor s(b) in ,U®o» Us, (1.35)

hold [Sch2, Prop. 3.7], where in (1.27) we mean the Takeuchi-Sweedler product
UXopU = {Zluz ®vi € U @aor Uy | 2ui9a®@v; =Y u; @arv;, Yae A}.

A morphism w: (U, A) — (V, A) of left Hopf algebroids over the same base is a morphism of the
underlying left bialgebroids as specified in (1.23) that additionally fulfils

Byl om = (1 Q@uer m) o B (1.36)



14 X. BEKAERT, N. KOWALZIG, AND P. SARACCO

One easily verifies that a bialgebroid morphism between the underlying bialgebroid structure
between two left Hopf algebroids is automatically a left Hopf algebroid morphism.

Observe that the canonical map (1.26) is not the only one of this kind: a different choice leads
to the notion of right Hopf algebroids.

Ezample 1.19 (Universal enveloping algebra of a Lie-Rinehart algebra). It can be proven that the
universal enveloping algebra U, (h) of a Lie-Rinehart algebra b is a cocommutative left bialgebroid
over A (see [Xu, Thm. 3.7]) and, in fact, even a left Hopf algebroid (see [KoKr, Ex. 2]). The
structure maps are uniquely determined by

AX)=X®,14+1R, X, e(X) =0, (1.37)
BHUX®41) = X Quor 1 =1 @00 X (1.38)
for all X € b. In particular, the action (1.25) satisfies
e(Xa) = e(aX) + X(a) 2" X(a) (1.39)
for all X e h and a € A. n

Remark 1.20. A left Hopf structure on a left bialgebroid still does not imply the existence of an
antipode as in [B6Sz]. For example, the universal enveloping algebra U, (h) of a Lie-Rinehart
algebra (A, b, w) admits an antipode if A is equipped with a flat right (A, h)-connection [KoPo,
Prop. 3.12], which, however, may not always exist [KrRo].

However, in case (U, A) = (H,k) is a Hopf algebra over a field k, then the invertibility of 3
guarantees the existence of the antipode S. In this case, one has hy ®x h— = h(y ®x S(h(g)) for
any h e H. [

In view of Remark 1.18 and Example 1.19, the isomorphism of categories between the category of
representations of a Lie-Rinehart algebra and the category of modules over its universal enveloping
algebra from §1.4 can be enhanced to an isomorphism which also respects the monoidal structure
on the two, as summarised in the following standard result.

Theorem 1.21. There is a monoidal isomorphism of monoidal categories between the category of
representations of the Lie-Rinehart algebra (A, ), or left (A, h)-modules for short, and the category
of left U, (h)-modules.

1.8. Left module algebras and the smash product. Let (U, A) be a left bialgebroid. Recall
that a (left) U-module algebra is a k-algebra R equipped with a left U-module structure U ® R —
R,u®r — wu-r, such that, with respect to the A-actions from (1.24),

(raa)r’ =r(avr'), u- (') = (ugy - ) (ug - 1'), u-ly =¢(u)»ly

foralla € A, r,r' € R, uw € U. In particular, 1, <a = a » 1, for all a € A. Equivalently, R is a
monoid in the monoidal category of left U-modules.

Given a left module algebra R over a left bialgebroid (U, A), we may consider the smash product
R#U (see, for instance, [Bo, §3.7.1]). This is the k-vector space R ®, U together with unit
1z ®4 1, and multiplication

(r@su)(r' @, u)=r (u(l) . r') ®a u(g)u'
for all r,7" € R and all u,u’ € U. It is, in fact, an R-ring with the k-algebra morphism
R — R#U, r=>rQRaly. (1.40)

Lemma 1.22. If (U, A) is a cocommutative left bialgebroid (or left Hopf algebroid) and R is a
commutative left U-module algebra, then R#U is a cocommutative left bialgebroid (resp. left Hopf
algebroid) over R.

Proof. Observe that, in this setting, R becomes an A-algebra with respect to the symmetric
A-action a>r = s(a)-r =t(a)-r =r<aforall a e A, r € R. Thus, we do not need to specify which
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A-action we are considering on R when taking tensor products over A. Moreover, we already know
that R#U is an R-ring with respect to (1.40). In addition, it is straightforward to check that

A= (R®AUM)R®A U@uU ~ (R®A U) ®r (R®a U))
and e = (R@AUMR@)AA:R),
where (R®, U) ®z (R®, U) is given by

(R@.U)® (R4 U)
<(7"®A U) R (st®av) — (15 Qau) ® (t R4 v) ‘r,s,teR,u,veU>

(1.41)

define a cocommutative left bialgebroid structure on R #U.

Let us check explicitly the claim concerning the Hopf algebroid property. For the sake of clarity,
let us write (R ®4 U)®z ,(R®.4 U) for the tensor product in (1.41) and (R®. U) ,®x ,(R®. U)
for the tensor product

(R®.U)®(R®4U)
<(r ®au) ® (5t ®av) — (1(ug) - 5) ®au2)) ®(E®4v) | 1,8,t€ Ru,ve U>

Recall that to be a left Hopf algebroid for a cocommutative bialgebroid (U, A) means that the
canonical map 8: U, ®, ,U —» ,U®, U from (1.26) is invertible. Observe that (3 is left A-linear
with respect to the regular left A-action on both domain and codomain, that is

Bs(a)u®av) = s(a)uq) ®a uz)v,
whence 37! is left A-linear, too (see (1.35)). Therefore we may consider

—1
R®A (>U Q. >U) M,

and (pre)compose it with the isomorphisms

R®A (U< ®A I>U)

A(R®4.U)®r ,(R®a,U) 5> R4 (U4 .U), (r®aiu)@r(s®av)—>7s®au®av,
(R®4.U),, @ n(R®4,U) 5 R®a (U ®4 ,U), (r®at)®r (54 v) > r(u) - 8) @ tz) @a v,
in order to construct

JR®, V)@ (R, U) L2 28T v, (g U), @ (RO ,U)

(r®su)Pr(s®,v) (rs®aus) ®r (1z @a u_v).
To check that 3~ is, in fact, the inverse of

(R®a,U), ®n f(R®4,U) L5 (R®4,U)®n o(R®4 ,U)

(r®iu)®n (s@4v) — (r®aunu)) ®n ((ug) - 5) ®a ug)v),

it suffices to check that = ¢! o (R®4 ) ot. Thanks to the cocommutativity of A, a direct
computation shows that this is indeed the case. O

When the hypotheses of Lemma 1.22 are satisfied, we may call the resulting left bialgebroid (left
Hopf algebroid) structure on R#U a smash product left bialgebroid (left Hopf algebroid) structure.

Proposition 1.23. Let (A, h,w) be a Lie-Rinehart algebra over the commutative algebra A such
that b is projective as a left A-module. Assume that R is a commutative k-algebra together with
a Lie algebra morphism p: b — der(R) and a k-algebra morphism n: A — R such that n is also
a morphism of h-representations (intertwining p and w) and p(a - X) = n(a)p(X) for all a € A,
X eh. Then:

(a) The algebra R is a left U, (h)-module algebra, whence R#U4(h) admits a structure of smash
product left Hopf algebroid over R.
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(b) The R-module R®, Y admits a structure of Lie-Rinehart algebra over R with bracket
[r®. X, @, Y] =1’ @, [X,Y]=1"p(Y)(r) @4 X +71p(X)(r) @, Y
and anchor
wr: R®,4 b — deri(R), r®s X — rp(X) (1.42)

forallr,v" € R, X, Y €. This Lie-Rinehart algebra will be denoted (R, R X 4 b).
(c) One has Ur(R x4 b) =~ R#U,(H) as cocommutative left Hopf algebroids over R via the unique
morphism induced by

tr(r) > 1r®, 1 and LRl (T ®4 X) = 7 ®4 ty(X).

Proof. (a): first of all, observe that asking 7: A — R to be a morphism of h-representations means
that p(X)on =now(X) for all X € h. Since we have that

pla- X)(r) = n(a)p(X)(r) = a- p(X)(r),
p(X)(a-r) = p(X)(n(a)r) = p(X)(n(a))r +n(a)p(X)(r)
=n(w(X)(a))r +a-p(X)(r) =w(X)(a) r+a-p(X)(r)
for alla e A, X € h, r € R, the left A-module R is a representation of the Lie-Rinehart algebra
(A,h,w). In particular, since it is an A-algebra on which h acts by k-linear derivations, R is a
monoid in the monoidal category of (A, b, w)-representations. In view of Theorem 1.21, this makes
of R an U, (h)-module algebra with action uniquely determined by

tala) -r=nla)r and ty(X) - r = p(X)(r) (1.43)

forallae A, X € h and r € R. So we may endow the tensor product R ®, U, (h) with the smash
product structure R #U,(h).

(b): follows from [Hue, Prop. 1.16].

(¢): notice that both canonical morphisms ¢,: A — U,(h) and ¢p: h — U, (h) are left A-linear
morphisms, whence we may consider the extensions of scalars

(R®ita): R—> R, ULH), r—>1T®,1, and
(R®ALh):R®Ah_’R®AuA(h)a T@AX'_’T®ALE;(X)-
It is straightforward to check that they satisfy the relations (1.10), and that R ®, ¢ty takes values
in the space of primitive elements

Pr (R#UL(H)) = {z € R#UL(H) \ (1) O T(z) = T ®r 1 + 1 ®n 7}

of the cocommutative left bialgebroid R #U,(h). Therefore, by the universal property of Ur (R ®4 h)
as a bialgebroid (see [MoeMr¢, Thm. 3.1]), there exists a unique morphism of left bialgebroids

J' Uz (R®4b) > R#UL(D)

such that J' otpg,py = R®a ty. To prove that J’ is an isomorphism, let us construct an inverse.
In view of (b), the morphism 3: h - R®, h, X — 1; ®, X, is a morphism of Lie algebras and
of left A-modules. Consider the morphisms

Ly

A——"—>U,(b) b

'} J
R uR(R®Ah)<7R®Ah-

LR LR@A“

The composition ¢y o7 is a k-algebra morphism (as composition of k-algebra morphisms). The
composition trg,p © 7 is a Lie algebra morphism (as composition of Lie algebra morphisms).
Furthermore, they satisfy the relations (1.10). As a consequence, by the universal property of
U, (h), there exists a unique morphism of k-algebras J: U, (h) — Ur (R ®4 h) such that

Jouy=1tron and J oty = tRrgap ©J (1.44)
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In particular, J is left A-linear, where the A-module structure on Ux(R ®,4 h) is given by ¢ o,
and

[7(e0(X))s 00 (1) ] = (10,00 (X)), 0 (1) ] = 1 (w0 (1)) (1)

Y= (p(X) (1) U= e (1 (X) <)
for all X € h and r € R. By extension of scalars, there exists a unique morphism of left R-modules
Jr: R,UL(H) = Ur (R®, h) such that Jp(1®,x) = J(z) for all x € U, (h) and a straightforward
check using (1.45) and induction on a set of PBW generators of U, (h) of the form v = X7 --- X,
for Xq,...,X, € b shows that

Jr: R#UL(D) > Un (R®4 D), T #u— 15(r)](u),

is a morphism of R-rings.

By a direct computation, one may check that J, o J ovp =tz and Jp0J o Lrosn = Lr@Ab)
whence Jj, o J' is the identity, by the the universal property of U, (R ®, h) as an algebra (that is,
the one from §1.4). On the other hand, consider the composition J o Jr: R UA(h) —> RR.U(H).
Being it left R-linear, it is uniquely determined by J' (Jr (1 ®, w)) = J' (J(u)) for all u € U, (h).
Now, J' o J is a k-algebra morphism (as composition of k-algebra morphisms) which satisfies

(S 0J) (tala)) "= T (LR(n(a))) = (R®a ta)(n(a) ®4 1) = n(a) ® Ly, ) = Lz ®a tala)
and  (J'oJ) (1n(X)) "=’ (mm (y(X))) = (R®a ty)(1n @4 15(X)) = 1, @4 15(X)

for all a € A, X € b, we have that J' o J =1, ®, idy, ) and so J' o Jy is the identity as well. O

(1.45)

Remark 1.24. Given a commutative k-algebra R, we may always consider the Lie-Rinehart al-
gebra (R,detk(R),id). In this setting, giving morphisms p: h — derx(R) and n: A —» R as in
the statement of Proposition 1.23 is equivalent to giving a morphism of Lie-Rinehart algebras
(n,p): (A, h,w) = (R,derk(R),id) in the sense of [Hue, p. 61], which in turn is equivalent to giving
an A-algebra structure 7: A — R and a morphism of Lie-Rinehart algebras over A

0: b — A% (der(R),id) = {(D, 5) € very(R) x ver(A) | D(n(a)) = n(6(a)) for all a € A}
as in [Sa2, Def. 4.2]. |

1.9. Right comodule algebras. Recall that a right comodule over a left bialgebroid (U, A) is a
pair (M, d,,), where M is a right A-module and 6,,: M > M x, U c¢ M ®, U is a right A-module
map, satisfying the usual coassociativity and counitality conditions

(0 ®aU)0dy = (M®sA)ody resp. (M ®4¢€)0d, =idy.

As usual, we will write d,,(m) = mpo) ® 1 mpyy for all m € M. Any right comodule (M, d,,) can be
equipped with a left A-action

am = myg1e(a » mpy) = mpg1e(mp « a),

for all a € A, m € M. The category of right comodules over (U, A) is again a monoidal category
with monoidal product ®,. The right A-action and U-coaction on the tensor product of two
U-comodules M and N are, forallae Aand m®,ne M ®, N,
(m®4 n)a:=m®, na and Sm@aN(m @4 n) = (m[o] ®a 1)) ®a n[1M1]-

Right U-comodule algebras are, by definition, monoids in the monoidal category Comod-U of right
U-comodules. That is to say, they are right U-comodules (R, dr) together with a right U-colinear,
associative and unital multiplication pz: R ®, R — R with unit nz: A — R or, equivalently,
A-rings (R, nr) together with a coassociative and counital coaction dz: R — R®, U such that

(ar)r’ = a(rr'), (ra)r’ = r(ar’), r(r'a) = (rr')a,

Nr(a) = 1lra = alp, 0r(lra) = dr(aly) = 1, ®, t(a),

(rr)[o] ®a (1) 1y = [0 [0] ®a T a1 lio) ®a lp) = 1 ®4 1y
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Ezample 1.25. Let U = V be a morphism of left bialgebroids over A. Then U with
b= (VS U@ U5 U, V)

is a right V-comodule algebra. [

2. A GENERALISED BLATTNER-COHEN-MONTGOMERY THEOREM FOR LEFT HOPF ALGEBROIDS

In this section, we extend [BlICoMo, Thm. 4.14] to the realm of left Hopf algebroids. In order
to do this, we need to recall a couple of notions on measurings, weak actions, and 2-cocycles as
introduced (in this context) in [BoBrz].

2.1. Weak actions, cocycles, and crossed products. This subsection mainly contains (by now
well-established) material from [B6Brz], which will be stated quite in detail as explicitly needed in
the main theorem in this section.

Definition 2.1 ([BoBrz, Def. 4.1]). A left bialgebroid (U, A) is said to measure an A-ring ¢.: A — B
if there exists a map U ® B — B, u®b + u b which is A-bilinear with respect to the A-bimodule
structure (U ® B), = ,U, ® B, that is,
(s(a)t(a’)u) &b =t(a)(ucb)(d),

for all a,a’ € A, w € U and b € B, and which is such that

ues1g = (e(u)) and e (bb') = (u) & b)(u) & b) (2.1)
for all w € U and b,V € B.

A left U-module algebra B as in §1.8 is measured simply by the left U-action on B.

Definition 2.2 ([BoBrz, Def. 4.2]). Let (U, A) be a left bialgebroid and B a U-measured A-ring.
A B-wvalued 2-cocycle on U is a map o: ,U ® 400 U, — B which is A-bilinear with respect to the
A-bimodule structure »(U @00 U), = .U, ®auor U and for all u,v,w € U, a € A subject to
(1) (u@) e ula))o(ug),v) = o(u,avv),
(i) o(L,u) = u(e(u) = o(u, 1),
(#i1) (v & o(vay, w)))o(ue), veywe)) = oluay, va))o(ue)ve), ).
A U-measured A-ring B is called a o-twisted left U-module if a B-valued 2-cocycle o is given and
(iv) 1y, b=,
(v) (uq) & (va) & b)) (), ve) = oua), v (ue)ve) & b)
forall u,v e U, be B.

A measuring as in Definition 2.1 that additionally fulfils (iv) is called a weak (left) action.
Similarly to the bialgebra case, the map o(u,v) := t(e(uv)) is a (trivial) cocycle, provided that the
measuring restricts to the U-action on A, that is to say,

ue o(a) = t(u.a) 0z t(e(usa))
forue U and a € A. A twisted left U-module corresponding to this trivial cocycle o is simply a
left U-module algebra.

Proposition 2.3 ([Bo6Brz, Prop. 4.3]). Let (U, A) be a left bialgebroid and v: A — B be an
U-measured A-ring. Then the k-module B, ®, U is an associative algebra with unit 1z ®4 1y
and multiplication

(b®a u) ®x (V' @4 v) = bu(r) & b)a(ue), v(1)) @a ug)v(e)
if and only if o is a cocycle and B is a o-twisted U-module.

Definition 2.4 (Crossed product of an A-ring with a left bialgebroid over A). The associative
algebra resulting from the preceding proposition is called a o-twisted crossed product of B with U
and is denoted by B #, U.

For better distinction, we will sometimes write b #u instead of b ®, u for an element in B #, U.
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2.2. Crossed products from coring split exact sequences. This subsection is an extension
of the corresponding Hopf algebraic results in [BICoMo, §4] to the realm of left Hopf algebroids.
Such an extension allows to apply the corresponding results to the universal enveloping algebras of
Lie-Rinehart algebras.

Definition 2.5 (Left Hopf kernel). Let (U, A) and (V, A) be two left Hopf algebroids over the
same base algebra A and let U > V — 0 be an exact sequence of left Hopf algebroids. The set

B= {UEU| (U®am)(Avu) =u®4 1y € Us x4 >V} (2.2)
is called the left Hopf kernel of .

This definition is a straightforward extension to left Hopf algebroids of the corresponding definition
for Hopf algebras in [BICoMo, Def. 4.12].

Remark 2.6. Categorically, the left Hopf kernel of 7: U — V can be realised as the equaliser

(U®am)Ay

B—— U,

U, X4V (2.3)

URasv

in the category of left A-modules. Thus, B is a left A-submodule of U with action induced by .U,
but not a right A-submodule, in general. ]

The following is our analogue of [BICoMo, Lem. 4.13].

Lemma 2.7. Let (U, A) be a left Hopf algebroid as in Definition 2.5.

(i) The left Hopf kernel B € U is an A-subring of U with unit map s, : A — B. The elements of
B in U commute with the elements of t,(A), that is,

b<a=ty(a)b="0ty(a) =arb (2.4)
for allbe B and a € A.
(i) Equation (2.4) implies that
c:URB—>B, u®bw— uybu_ (2.5)

gives a well-defined left U-action on B, which we term left adjoint action, and which descends
to an A°-balanced action U, ®a- B — B. Moreover, it turns B into a U-module algebra.

Proof. (i): That s,: A — B defines on B the structure of an A-ring with well-defined multiplication
mpg: B« ®, »B — B directly follows from the A-linearity of the coproduct and the fact that it is
an algebra morphism as in (1.21). Namely, the following diagram commutes serially

e®e (U®am)Ay @ (URaT)Ay
BRB——UQ®U (Ux,V)®U x,V)
(U®asv)®(U®asv)
m'g mul lmUxAv
v (U®am)Ay
B—° =T Ux,V
U®asv

where e is the map introduced in (2.3). Hence there exists a unique m/’; which factors through
mg: B(®4 B — B. Moreover, concerning the commutativity between B and t,(A), by definition
of B we have that

b(l) ®a T (b(2)) =b®.1l,
in U®, V, for all be B, and hence also
b(l) ®A ™ (b(z)tU(a)) = b(l) ®A ™ (b(g)) tv(a) = b@A tv(a),

by multiplying on the right with 1, ®, t\.(a). By applying id, ®,4 €, to both sides of the latter
equality and identifying U ®, A ~ U by means of u ®, a — t,(a)u, we find that

(ty oev o) (baytu(a))by = (ty 0 ey 0 ty)(a)b =ty (a)b
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in U, where we used €, o t;, = id, in the second equality. Now, counitality (1.22) along with the
multiplicativity and A-bilinearity of A, (1.21) and &, = &y o 7 since 7 is a morphism of left Hopf
algebroids, allow to conclude that

btu(a) = (tU o E:‘U) (b(g)tu(a)) b(l) = (tU OEy O 7T) (b(g)tu(a)) b(l) = tU(a) b,

which proves (2.4). By this, the expression (2.5) is well-defined.
(ii): That the expression (2.5) indeed gives a left U-action now simply follows from (1.32), once
ensured that its image lands in B again, which one may explicitly check for all w e U and b e B:

(U @s M)A (usbu-) = urmbayu) @x (s (2)be)u(2)
= (up() ®a 7 (uy2)) - () @4 (byz)) * (u—(1) @a 7 (u_(2)))
= () ®a 7 (us(2))) - (0®a 1v) - (u—(1) ®a 7 (u—(2)))

= upybu_(1) ®a 7 (up(2) T (u(2))

= Uy (1)bU— @i (U s (2)U4-)

oy bu @, 1y,
where () follows from (1.31) and the fact that the assignment
WU ®uor (Us @4 0Us ) = Ui R4V, URa0r V&4 W > ubv @4 7 (u(z)w)
is well-defined, while (##) follows from (1.28) and the fact that the assignment
GUa @45U) Qaor Us = Us @45V, u®4 0 @00 w > ubw @, m(v)

is well-defined by means of (2.4). Hence, u.bu_ € B if b e B, as claimed. The second statement in
(ii) follows from (1.35), and the very last claim in (7) is proven as follows. We already know that
(2.5) defines an action. Let us verify that it also fulfils the conditions (2.1). As for the first one, for
u € U one has

ue 1y E upus "2 sy (0 (u)),
considering that 1 = 1,,, whereas the second condition in (2.1) is proven by
(u@y & b)(u) = b) = U1y by —u(2) b uge) - @ Ung (1) DUy (1) = Uy (29D
)y bbus E u s (b))
for all w e U and b, b’ € B, where (*) follows from (1.30) and the fact that the assignment
(Us @4 0w U) @uop Uy — U, UR A V@ o0 W > uypbu_vbw
is well-defined by (2.4) again, and (x#) follows from (1.29) in the form
Uy (1)4 Paor Uy (1)— U (2) Ouor U = Uy Quor 1 pop u— € WU ®uop WUy ® 400 Ul
and from the fact that the assignment
yU @uor vUs Quor Ug — U, U@ 00 V@ 400 w —> ubvb'w,
is well-defined. Hence, (2.5) defines the structure of a left U-module algebra on B. g

Remark 2.8. Observe that for an arbitrary U-bimodule M, the above definition (2.5) of an adjoint
action is not well-defined as u, ®4op u— € ,U ® o0 Uy, and it is precisely (2.4) that makes things
work for the left Hopf kernel. [

The following is then an adaption of [BICoMo, Thm. 4.14] to our needs. In view of Proposition
2.3, the idea is now pretty simple: given a surjective morphism of left Hopf algebroids 7: U — V'
over A, we exhibit a cocycle with values in the left Hopf kernel B and we show that B is a twisted
o-module with respect to the left adjoint action (2.5). This allows to form a crossed product
B #, V, which is then shown to be isomorphic, by an explicit map, to the left Hopf algebroid U.
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Recall that a morphism between the underlying corings of two left Hopf algebroids over the
same base is a map v that fulfils, in particular,

v(a»v) =a>vy(v), y(w<aa)=v(@)<a, YveV, ae A, (2.6)

and in general commutes with almost all of the structure maps as in (1.23) except for the first that
speaks with the multiplication. In other words, it is in general neither a morphism of rings nor of
the Hopf structure in the sense of (1.36).

Theorem 2.9. Let (U, A) and (V, A) be two left Hopf algebroids over the same base algebra A and
let USV — 0 be an exact sequence of left Hopf algebroids which splits as an A-coring sequence,
that is, there exists a morphism ~v: V. — U of A-corings such that wo~ = id,.. Assume furthermore
that U, is projective as a right A-module and that

1(1v) =1y,  Alarv)=arv(v), Y(vea)=7)«a,  VYveV,acA  (27)
Let B be the left Hopf kernel of m as in Definition 2.5. Then
0:V@uor Vo B, 1@ w— tuey (V(v2)wey)+)v(0a)v(wm)(veywe)- (2.8

is a cocycle in the sense of Definition 2.2 such that B becomes a o-twisted left V-module with
respect to the weak left V-action

vebi=y(v) by(v)_, veV, be B, (2.9)
on B induced by (2.5). In particular, there is an isomorphism
O:B#,V->U, b#vw— by(v) (2.10)
of A°-rings and of right V -comodule algebras, with inverse given by
VU B#,V, ue (tyoe)(v(m(uw)), Juayy(mlue))  #r(ues), (2.11)

where B #, V is an A°-ring via
A°—> B#,V, a®dad — s,(a)#t,(a),
and a right V -comodule algebra via
B#, V= (B# V)®.V, b#v— (b#v4)) ®av()

Proof. To start with, and for reference in this proof, let us write down again what it explicitly
means for v to be a morphism of A-corings for the underlying left bialgebroids (U, A, Ay, ey, Su, ty)
and (V, A, Ay, ey, sy, ty): we have
(Y®av) oAy =Ay 07, Ev =&y 07, YOSy = Sv, yoty =ty. (2-12)
Observe that in contrast to m, the map  in general is neither a morphism of algebras nor of Hopf
structures in the sense of (1.36).
Next, let us introduce a couple of maps that will be instrumental in proving that (2.10) and

(2.11) are inverse to each other. Since both 7 and v are A-coring morphisms which are compatible
with the black actions (see (1.19)),

0y = (U®a7) 0o (U®am)oAy, u— ug) Qa7 (m(u)))

defines an additional right U-coaction on U itself. If £: U — U X 4op U denotes the translation
map, that is to say, £(u) = B~ H(u®, 1) for all uw e U, and

a: (Ux,U) X0 U —>U X4 U Xpop U and o U X4 (UXpop U) > U x4 U X400 U
denote the canonical maps associated to the double Takeuchi x-product, then by mimicking the
argument used in [ChGaKo, proof of Thm. 4.1.1], we observe that there are two well-defined maps

¢3=(UXAEU)XAOPUZ (UXAU)XAOPU i UXA0pU7
Y=a'o(Ux,&)0d,: U — Ux,Ux,0 U,

where by v(v < a) ‘2’ 4(v) « a one deduces that §, takes values in U x , U. Since Uy, is projective
as right A-module, by [Ta, Prop. 1.7] both o and o’ are isomorphisms and hence we can consider

= (pwopoa toy):U—-TU, u = tyey () +) uy Y (ug) -,
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where py: U X 400 U — U is induced by the multiplication of U. We claim that the map ¢ just
introduced maps U to the left Hopf kernel B, inducing an A-bilinear morphism ¢: ,U; — ,B.. In
fact, for all u € U we have

B () "2 ) A (w(wga)) 1y ®a oo (3 () ) vy 7 (wla))
and therefore

(U ®A W)AU@(u) (123) u(1)7(”(u(3))),(1) ®A tVEU (’V(W(U(g))) ) (U(g)) ( ( (U(g)))_(2)>
“27 war(m(ue)e) ) ®a tveo (v(r(ue)e) ) mum) o (1(r(we)e) o)

(1) )) ( ( (u(2))(2))7(2))
)(1>> ( (7 (“(2>))(2>—(2))

u@y (@) @) _ o) ®a tvew (Y(r(ue) @)+ )7 (7(m(u)
(2.12) )

(1. SU) (%)

(m(

(
u@ (7 (@) o)1) @a tvew (Y (u@))@+)w (v (r(ug)
»( )y ®@a (¥ (7(u@)) () _ )

Y (m(ue)) ®A7T( (m(u2)), ¥ (7)), )
tveu (v (m(ue)), Juayy(r(ue)) - ®a lv = ¢(u) ®a lv,

where in (+) we applied (1.30) as follows: notice that

7 (u(2)

)
)
)
Qe )

(1.33),(2.2)

U o U X400 U 25 (U 5, U) x gop U 245002 171 S U @0 U

is well-defined and left A-linear, whence from the identity (1.30) we deduce that
U1y ®a toeu (7 (u2))2)+ )17 (u(2y) (1) @acr Y7 (u(2)) (2)

= w1y ®a tueo (Y7 (u(2)) 1+2)) Y (U(2)) 4 (1) aor YT (2)) -
Y2 w1y ®a Y (u2)) + @ace YT (u(2))—-
Moreover, since Ayu € U x , U along with the specific A-linearities (1.23) as well as (2.7) of 7 resp.
v, we can further deduce that
uy Y (U))@)) ®a toew (1(u@) @)+ )17 (@) )17 (U))@))
= u)ym(U2))—(1) ®a Y7 (w(2)) + 77 (U(2)) —(2),
and hence () follows. Similarly, in («) we applied (1.31) as follows: one has
U1y ®a YT (w(2)) + @ace Y7 (U(2)) (1) ®a Y7 (U(2)) —(2)
= (1) @a Y7 (U(2)) 4+ ®acr Y7 (u(2) )— ®a y7(u(2)) +—

inU X, (Uxuo0Ux,U) U x, U x 400 U x, U because the leftmost U, is projective. Finally,
by performing

HUx 4 U

UX,UXuop UXx,U->UX,UQ@uop Ux, U—=>U x,U,
we conclude that
u) Y () - (1) ®a Y (w2)) 477 (U(2)) —(2) = w) YT (U(2)) = @ YT (U(2)) 4+ 77 (U(2)) +—
which is ().
The k-linear maps (2.10) and (2.11) can now be seen as a composition of well-defined maps
= (U2 U 0,V £ Bg, V),
and

0= (B.@,.V L U, @, U L5 1),

where i: B — U is simply the inclusion. Let us verify that they are inverse to each other, indeed.
Since m and 7 are morphisms of A-corings, we have

D(V(u) = toew(Yr(wa))+)u@yym(ue))-m(ue)
tuew (Y (uez) @)+ ) w1 (u@) 1) -1m(ue)) @)
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(1.29).(%)

togw (Ym () ua) = v,
that is, ® o ¥ = id,; as desired, where in (x) we used (1.29) to obtain
u(1)y ®a Y (U(2)) 1)+ ®acr YT (u(2)) (1)=7 (U(2)) (2) = (1) ®a YT (U(2)) R acr 1y
in U x4 (U®quor U). Since Uy, is projective as an A-module, (U x , U) @400 U S U ®,4 U @ 400 U
and its image coincides with U x 4 (U ® 4or U), whence applying
U 5 (U@uor U) = (U x4 U) @on U ~L2A000Y, 170 0 U 22,

to the last equality yields (x).
Secondly, we check that ¥ o ® = idzg,. Observe first that for all b€ B and all u e U

by (bu) = bryuy @a ¥ (m(b2))m(u2))) = bugry @4 v (u(2))

holds by the very definition of the left Hopf kernel B of 7 as in (2.2), along with the unitality of .
Therefore, since B commutes with the image of ¢, as in (2.4), the map d, and hence ¥, ¢, ¥, and
® are left B-linear with respect to the regular B-module structure. Moreover,

Voy=(p@imodyoy=(p@am)o(Y®17)0Ay = (p7®a V)0 Ay
and since
pory = ,quq’)oa_loqufy

= pyo((Uxsey) xaow U)ot oa’ o (U x,E) 0,07

= pyo((Uxsey) xaomU)oa ™ od/ o(U x4 0d, 079

C2 o (U x4 gU) X o0 U)oa ™ oo 0 (8, X400 U)o Eory

= pyotoy "2 s, 08,0y =5,0¢,,
it follows that W o~y = s, ®, V. Therefore, for all be B and v € V', we see that

UO(b®, v) = V(by(v)) =bU(v(v)) =b®4 v.

Summing up, U ~ B®, V as k-vector spaces. The various statements in Theorem 2.9 now follow
by transport of structure along this isomorphism. Indeed, notice that the assignment (2.9) is
obtained as the composition

veB 25 UeB S B,

where the latter map is (2.5) for the U-module algebra structure on B from Lemma 2.7. Therefore,
since by hypothesis v is a morphism of A-corings and since it satisfies v(1,.) = 1, the above is a
weak left V-action in the sense of Definitions 2.1 and 2.2. By transport of structure we can define
a multiplication on B®, V by

(b®av) - (' @4 w) =T (by(v)by(w)).
Also observe that, for every b € B, the assignment
WU ®uop Uy = U, U@ o0t — ubtd,
is well-defined once more by (2.4). Consequently, (1.29) implies
V(W) b =y(v) 1)+ Y (v) 1)-1 (V) 2)
and hence
(b®av) - (V' ®aw) = (by(v)b'y(w))
= )@+ 7)) 0)-¥ (7(v) )7 (w))
by(v(a)) + b7 (V) - ¥ (Y(v() )y (w))
= bva) & V)W (v(ve)v(w))
L (v & V)toes (73 () )1 (W) @)+ )1 )W)y (1 (@)1 (W) 2) - ®a T (Y(ve) V(W) (3))
= blv & V)tver (Ve we)+ )7 (V)1 (wm )1 (e we) - ®a vy we),

—~ =~
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where in (f) we applied (2.12) as follows: since 7 is a map of A-corings, we have

(1 @4 W) 0 (E@a 1)) (Y(0) (1) ®a Y (0) 2)7(w)) = ((try ®4 W) 0 (E®a U)) (V(v(1)) ®a Y(v(2))7(w)),

which entails (). In (f) we applied the fact that 7 is a morphism of A®-rings, 7 is a morphism of
A-corings and 7 oy = id,,. Finally, defining

c:V xV - B, (v,w) = (B®. ev) ((IB®Av)-(1B®Aw)),

one obtains the expression (2.8) that factors through the tensor product ,V ® 40 V4 because of
A(t(a)) = 1®., t(a) for all a € A. We conclude that ¢ is a Hopf cocycle by Proposition 2.3. [

3. SMASH AND CROSSED PRODUCT DECOMPOSITION OF UNIVERSAL ENVELOPING ALGEBRAS

In this section, we will see how to use the just obtained Theorem 2.9 in the context of various
crossed product decompositions arising from short exact sequences of Lie-Rinehart algebras.

3.1. Short exact sequences of Lie-Rinehart algebras and left Hopf kernels. Assume that
we have a short exact sequence

0-nsg5Hh—o0
of Lie-Rinehart algebras over A which are projective as (left) A-modules. By functoriality of
U,(—): LieRin, — Bialgd ,, the maps ¢ and 7 induce morphisms of left Hopf algebroids

I: Us(n) = Ua(g) and IT: U,(g) = U(D). (3.1)
Notice that, by a direct check, for alla € A and X e n
(Lo I)(tn(X)) =1 (g («(X))) =ty (7 (u(X))) =0  and  (Ilol)(a) =1I(a) = a

because they are morphisms of A-rings. Therefore, by the universal property of U,(n), we obtain
ITo I = e. Moreover, since 7 is surjective and U, (h) is generated by A and b as an algebra, II is
surjective as well.

Lemma 3.1. Since n and g are projective left A-modules, the map I is an injective morphism.

Proof. The statement follows from the injectivity of + and of 4, along with a variation of the
Heyneman-Radford Theorem (see [Sal, Thm. 4.13] or [MoeMré, Lem. A.1]).

As in [MoeMr¢, §2], since n is projective, U,(n) = ker(e) is a graded projective cocomplete
non-counital cocommutative coalgebra. Its natural filtration (whose n-th term is composed by all
elements that can be written as a product of at most n elements of n) coincides with its primitive
filtration and it is composed by projective A-modules. In particular, in the notation of [MoeMr¢],
Us(n); = n and U,(g), = g. Now, Lemma A.1 in op. cit. states that if I: U,(n) — U,(g) is
injective when (co)restricted to Iy: U,(n); — U,(g),, then it is injective. Here, I1 = ¢, which is

injective, indeed. To conclude, injectivity of I follows from the fact that U,(n) = A@U,(n) and I
is already injective on A because it is a morphism of A-rings. O

The following proposition provides us with an effective way to check if an element in U, (g)
belongs to U,(n) or not.

Proposition 3.2. Via the morphism I: U,(n) = U,(g) from (3.1), we have that
Ua(n) = Ba(g) = {w € Ua(0) | (Ua(0) ®4TT) (A, (q)(2)) = 2@ 1},

In particular, up to the canonical morphism I, we may identify U,(n) with BA(g).

We divide the proof into a number of steps, reported in the forthcoming lemmata. We first show
that the morphism I: U,(n) — U,(g) from (3.1) lands in B,(g), and second, that the induced
morphism is an isomorphism whenever n, g, as well as h are free over A. Then we prove that for
every prime ideal p in A, we have U,(n), =~ U,,(ny) and B,(g)p =~ Ba,(gp). Finally, we conclude
by recalling that bijectivity for a morphism is a local property.

Lemma 3.3. The morphism I: U,(n) = U,(g) from (3.1) maps U,(n) into B,(g).
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Proof. Tt is straightforward to check that the k-algebra morphisms (U4(g) x4 II) 0 Ay, (g © I and
G Ua(n) > Ua(g) x 2 Ua(h), u— I(u) @4 1,

are well-defined and satisfy
(( 4(9) XAH)OAL{A(g)OI)(a) =a®,1=j(a) as well as
(Ua(8) X2 T) 0 Ay gy o 1) (ta(U) = 15 (L(1)) @ 1+ 1@ 1y (7 ((U))) = 5 (1a(V))

for all @ € A,U € n. Therefore, by the uniqueness part of the universal property of U,(n),
(Ui(g) xaTT) 0 Ay, gy © I = j and so [ lands in B,(g), as claimed. O

Lemma 3.4. Ifn, g, and b are free left A-modules, then the morphism U,(n) — B,(g) induced
by I from Lemma 3.3 is an isomorphism. In particular, we may identify U,(n) with B,(g).

Proof. Assume that n, g, and b are free left A-modules and pick an element

N
ag + Z aan,l o Xn,n € BA(Q),
n=1

where X, 1 < -+ < X, ,, are elements of an ordered basis of g and where a; € A for all i. The
condition of belonging to B,(g) entails that

N N
agp ®A 1 + Z aan,l o Xn,n ®A 1= ag ®A 1 + Z Z aan,il ot Xn,it ®A H (Xn,j1 o Xﬂ,js) )
n=1 n=1s+t=n
where on the right-hand side the second sum involves only shuffles of X, ; < --- < X, ,,, that is to
say, Xpi, < -+ < Xy, and Xy, 5, <--- < X, ;. still hold. Therefore,

N
0=> D @nXng  Xng @a 7 (Xny) -7 (X))

n=1s+t=n
s=1

By the Poincaré-Birkhoff-Witt theorem, the left-hand side tensorands are still elements of a basis
of U,(g) over A, whence, in particular,

anNT (XN,k) =0

for all kK = 1,..., N because these are the right-hand tensorands of the summands of the form
anXni; - XNin_y ®a ™ (Xn ). In principle, one may have repetitions among the Xy j (as it
happens for X? ®, 1 with X € n, which gives rise to the identity 0 = 2X @, 7(X) + 1 ®, 7(X)?
for instance, from which one deduces that 27(X) = 0), but since we are working over a field of
characteristic 0, this does not affect the argument. As a consequence, if ay # 0, then 7(Xy ) =0
forall k=1,...,N (because b is free over A), and hence Xy j € n. In view of the latter, we may
consider further the element

N N-1
ap + Z aan,l ot 'Xn,n - aNXN,l e XN,N =ap + Z aan,l e Xn,n € BA(g)
n=1 n=1

and iterate the argument before to conclude that ag + 22721 anXn,1-+Xnp is, in fact, the image
of an element in U, (n) by means of I. O

See [BICoMo, Ex. 4.20] for an indirect proof of the same claim (notice that, even if k is assumed
to be a field therein, their results still hold for k a commutative ring, provided that the Lie algebras
under consideration are free over k).

Summing up, we proved Proposition 3.2 in case the involved Lie-Rinehart algebras are free as
left A-modules. Let us go back to the general case in which n, g, and § are projective A-modules.

Lemma 3.5. Let p be a prime ideal in A. For any Lie-Rinehart algebra (A,bh,w) over A, the
localisation by, of the left A-module b at p admits the Lie-Rinehart algebra structure (Ap, Ay X4 h)
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over A, introduced in Proposition 1.23(b), and this construction induces a functor LieRin, —
LieRina, given on objects resp. morphisms by

(A,h,w) = (Ap, by, wy) and [ Ay ®af,
where wy(X) (a/b) = (w(X)(a)b — aw(X)(b))/b* for all a/be A, and X €.

Proof. For p a prime ideal in A, we can consider the localisations A, and b, of A and h at p,
respectively. Recall that b, ~ A, ®. b as left A,-modules. Therefore, the first claim follows directly
from point of Proposition 1.23(b) with R = A,. We leave it to the reader to verify the functoriality
of the construction. O

Lemma 3.6. Let p be a prime ideal in A. Then, U,(h), admits the structure of a smash product
via the isomorphism U,(h), ~ Ap @4 UL(D) as well as

Z/{Ap (bp) = uA(b)P = Ap#uA(b)

as cocommutative left Hopf algebroids over Ay, where the first isomorphism arises via the unique

morphism induced by
a ta(a) X tp(X)
w (5) = 4 and. i, (b> Ty

Proof. In view of Lemma 3.5, the statement follows from Proposition 1.23 with R = A,. O

Lemma 3.7. Let p be a prime ideal in A. Then there is a canonical isomorphism
Ba, (gp) ~ Ap ®. Ba(g)
as left Ap-modules.

Proof. Recall that
Ba(s) = {z € Un(0) | (Ua(0) @4 TT) (Apy, (g (7)) = 2 @2 1}.
by definition. Therefore, as left A-module, B,(g) is also the equaliser in 4Mod of
(id®4 ) o A

Ua(g) @il UA(g) ®a U(D)

(since the x 4-product is a submodule of the tensor product over A, this is the same as the equaliser
from Remark 2.6). As A, is flat over A, the rows of the following commutative diagram are
equaliser diagrams as well

id®a ((i[d®a )0 A)

Ap ®4 Ba(g) Ap ®4UA(9) - - Ap @4 (Z’{A(E) ®a UA(f)))
id®a (Id@A 1)
1 I (id®a T, )0 A, I
BA(Q)p UA(E)p T uA(G)p ®a, uA(h);r

Furthermore, since the assignment h — b, by Lemma 3.5 is functorial, there is a short exact
sequence of Lie-Rinehart algebras

0—np g, = by >0
(which still splits as sequence of left A,-modules), whence we may consider the equaliser diagram
(id®a, ') o A

By, (gp) ——— U, (gp) Y Ua, (8p) ®a, Ua, (bp)
1 Ap
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of left Ap-modules. Now, the isomorphism U(g), ~ U, (gp) of left Hopf algebroids over A, from
Lemma 3.6 implies that the diagram

(id@a 1, )o0n,

Ba(9)p Ua()p - Ua(9)p ®a, UA(b)p
Id(@,@,p 1
I (id ®a, H’) oA 1
BAp (gp) UAp (gp) - UA,, (gp) Da, uAp (hp)
Id(@Ap 1
commutes, from which we deduce B4(g), ~ Ba, (gp) as claimed. O

We are now in a position to prove Proposition 3.2.

Proof of Proposition 3.2. By Lemma 3.3, the injective morphism I: U,(n) — U,(g) lands in B,(g),
inducing therefore an injective morphism I: U,(n) — B,(g). For every prime ideal p in A, we
may consider the isomorphism of cocommutative left Hopf algebroids JJ : U, (g), ~ U., (gp) from
Lemma 3.6 and we may look at

UA,, (np) T> B, (9p)-
In view of Lemma 3.4, the bottom arrow I’ is an isomorphism (the localisation of a projective
module is a projective module over the localised ring and every projective module over a local ring
is free). By Lemma 3.6, the left vertical arrow Jyy is an isomorphism, and Lemma 3.7 implies that
the right vertical arrow Jg is an isomorphism as well. Hence, we are left to check that the diagram
commutes. Set J* = Jg (1Ap ®a —). Since all the morphisms are left Ap-linear, it is enough to
check that

(I'oJg) (1a, ®azx) = (I'oJ") (x) equals (J§oly) (1a, ®az) = (J9oI)(x)

for all € U (n). Since all the latter morphisms are morphisms of k-algebras (and of A-rings, in
fact) and since

I'(JMa(U)) =7 1 (tn, 0a(U))) = tg, (tp (3 (U)))
= tg, (9 (U())) "= T% (14 (UU))) = J® (I (ta(U)))

for all U € n, the above diagram commutes by the universal property of U, (n) and so I, is bijective
for every prime ideal p of A. As bijectivity is a local property, we conclude that I is bijective. [

3.2. Short exact sequences of Lie-Rinehart algebras and the crossed product decom-
position. Assume that 0 — n - g = h — 0 is a short exact sequence of Lie-Rinehart algebras,
which are projective as left A-modules. Let v: h — g be a section of 7 as a left A-linear map. We
can now consider the following composition

—1

T Uy () 2 Sa() 222 S, () 25 U, (g), (3.2)

where Sy and Sy denote the symmetrisation maps (1.12) for the Lie-Rinehart algebras b and
g, respectively. The map I' above is a morphism of A-corings thanks to Theorem 1.13 and to
functoriality of S,(—) (in fact, S,(7) is a morphism of left bialgebroids over A).

Proposition 3.8. The A-coring morphism I" induced by ~y is a section of the left A-bialgebroid
morphism 11 := U, (7). Moreover,

FNaru<sdb)=arT(u)«d
forall a,be A, uelU,(h).



28 X. BEKAERT, N. KOWALZIG, AND P. SARACCO

Proof. Fix a dual basis {x;,p; | ¢ € I} of g and consider the elements 6; = 7(x;) € h and
@i = p; 0y € Hom ,(h, A) for all i € I. For every X € h, one has

ZI@-(X)@' = ZI%'(V(X))7r (x:) = 7( ZI%(V(X))Xi) =7m(v(X)) = X,
1€ 1€ 1€

whence {0;,¢; | i € I} forms a dual basis for h. To prove that IIoI" = idy, (), we show that
IToT oSy = Sy. Equivalently, we are going to show that ITo Sy 0 S,(y) = Sy. Since all involved
maps are (left) A-linear, it is enough to check it on a homogeneous element of the form X - - - Xj:

(IToSg 0 8a(7)) (X1-++ Xp) = (Lo Sy) (v (X1) -+ (X))

112 ].
(Y e G e 6D X X

1y JRE€L
ceBSy,
1
= 0 2 G0 (X)) ()T (Xawy) T (i)
" g1y dr€l
oeSy
1 1.1:
= H Z ¢]1 (X1)¢]k (Xk)aja(l)”'eja(k) (:12) Sh (Xle)
’ J1seeJRE€EL
ceSy,

Concerning the last claim, since a » u « b = uab as elements in U,(h) for all a,b e A, u e U,(h),
it would be enough to check that T'(ua) = T'(u)a for a € A, u € U,(h). If we denote by r, the
endomorphism (both of ¢, (h) and U, (g)) given by right multiplication by a € A, it suffices to check
that 'or, oSy =17, 0T 0 Sy or, equivalently, that I'or, 0 Sy = 1, 0 Sy 0S,(7y) on an homogeneous
element of the form X --- X € S,(h). For the sake of readability, we postpone a detailed proof of
it to §A.3. O

Let us provide an example of why I" o 7, 0 9y = r4 0 g 0 S4(7).

Ezxample 3.9. With the same conventions as in the proof of Proposition 3.8, we have

I'(Sy(XY)a 4(2@ )(0:0; + 0;0:)a)
= 71—‘(2 ¢’z ( (0 9 + 9 0; ) + Qwh(ﬁi)(a)ej + Qwh(ﬁj)(a)ei + [wh(ei),wb(t?j)](a)))
= al(Sy(XY)) +wy(X)(@)L(Sy(Y)) + wy(Y)(@)I(Sp(X)) + %Z¢i(X)¢j(Y)[Wh(9i):Wh(ej)](a)

2 a S ((X)(Y)) + wy(X)(@)Ss (7(Y)) + wy (Y)(a)Sg (v(X)) +

+ 3 D (100) 5 (1) o (10 0 (70)) (@)
= %Z i (7(X) 25 (v(YV) (G(Xin +x5x1) + 2wg (xi) (@)x; + 2wq (x5) (@) xi + [wg(Xi)7wg(Xj):|(a)>
= %Z @i (7(X)) i (v(Y)) ((xixj + xjxi)a) =S, (Sa(M)(XY)) a.

for all X,Y e h and all a € A. [
By applying Theorem 2.9 and Proposition 3.2 we may conclude the following.

Theorem 3.10. Let 0 - n = g 5 b — 0 be a short exact sequence of Lie-Rinehart algebras,
which are projective as left A-modules. Then we have an isomorphism

Ua(g) = Ua(n) #: Ua(H)

of A-rings and right U, (h)-comodule algebras, where o is defined as in (2.8).



UEA OF L-R ALGEBRAS: CROSSED PRODUCTS, CONNECTIONS, AND CURVATURE 29

Proof. The sole detail that deserves to be highlighted is that Theorem 2.9 entails that U,(g) ~
Ua(n) #, Us(h) as A°-rings, where the structures of rings over A® are given by

ARA — U.(g), a®b — 1,(ab),
ARA — U m)#UsBH), a®b — 14(a)®4t4(b) =1®,4 ta(ad) = t4(ab) ®,4 1.
It is then clear that U,(g) ~ U,(n) #, U (h) as A-rings as well. O

From Proposition 1.8 we directly deduce:

Corollary 3.11. If g ~n 3, § is a curved semi-direct sum of the A-Lie algebra (A,n) and of the
Lie-Rinehart algebra (A, bh,w), both projective as A-modules, then we have an isomorphism

Us(n D7 b) = Ua(n) #: Ua(h)
of A-rings and right U, (h)-comodule algebras.

Summing up, any left A-linear splitting v: h — g of a short exact sequence 0 - n - g ->h — 0
1

of Lie-Rinehart algebras over A gives rise to an A-coring splitting I'; := Sy 0S,4(vy) o Sy~ of the
surjection U, (m): Us(g) — U, (h) such that T, is also right A-linear and I', (1) = 1.

Lemma 3.12. Let : g — b be an epimorphism of Lie-Rinehart algebras over A which are projective
as left A-modules. Assume to have an A-coring splitting T' of the surjection U, (m): UA(g) — UA(H)
such that I'(1) = 1. Then T induces a left A-linear splitting yr of m: g — . Moreover, if ' =T,
for some v: h — g, then yp = .

Proof. Notice that for every X € h we have
Ag(T(X)) = (T @4 1) (Ap(X)) =T(X) ®@x 1 +1@4 T(X),

which means that I'(X) € P,(U4(g)) = g is a primitive element. Therefore, there exists a unique
r: b — g such that

commutes. Since

tg(r(a- X)) =T (tp(a- X)) = tala) T (t5(X)) = tala) - 1g(v(X)) = 1g(a-r(X))
for all a € A, X € b, it follows that v is left A-linear. Furthermore,

wy (7(y0 (X)) = Ua(7) (15 (0 (X)) = Ua () (L (25 (X))) = 15(X)

for all X € b, which implies that 7 o v = idy. The final claim follows from observing that
Iy (X) =v(X) for all X €. O

Remark 3.13. There is no reason to expect that the correspondence in Lemma 3.12 is a bijective
correspondence, since the assignment v — I" depends on an arbitrary choice of (what physicists
loosely call) “an ordering”. Consider, for instance, the following toy example over A = R, the real
numbers. Let g be the Heisenberg algebra over R defined as g = Rq @ Rp ® Re, endowed with the
Lie bracket (the so-called “canonical commutation relations” in physics)

[p,al=c and  [p,c]=0=]q,c],
and let h be the two-dimensional abelian Lie algebra Rz @ Ry. The linear morphism
q—=

T g—h, Py
c—0
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is a surjective Lie algebra morphism with kernel the one-dimensional central Lie subalgebra n = Re.
In other words, the Heisenberg algebra g is the central extension of the abelian two-dimensional
algebra h by the one-dimensional abelian algebra n. In this case,

Um) ~R[C],  U(h) ~R[X,Y], and  U(g) =~ R[Q, C][F;4],

the Ore extension (also known as skew polynomial ring) of the polynomial algebra R[@Q, C'] with
respect to the derivation § € der(R[Q, C]), uniquely determined by

(Q)="C_ and 6(C) = 0.
The Hopf algebra morphism U(rw): U(g) — U(h) is uniquely determined by
m(Q) = X, m(P)=Y and w(C) = 0.

Now, the R-linear maps

I':U(h) - U(g), XY™ — Q"P™
and

I':U®h) - Ulg), X"Y™ s P"Q"
are both coalgebra sections of the projection U(w) (the first one corresponds to the mapping in
[BICoMo, Ex. 4.20] by considering the basis {z,y} of h ordered by z < y and the second one is
simply obtained by considering it ordered by y < x). Both of them, when restricted to b, give rise
to the R-linear section

T q
7:b—g, {

y—=p
of . However,
I"(XY)=PQ=QP+C # QP =T(XY).
Note that the differential star product

0

1@ P)+9(Q.P) = (ex0 (€52 ) (FQP + D@+ 4.P) s (3.3)

on R[Q, P] endows the associated graded space grU(g) = R[Q, P,C] with the structure of an
associative algebra isomorphic to U(g), in formulas

(Um) #, U(h),") = (Ulg),*),

and where the image of I identifies with the subspace R[Q, P]. The counit is the evaluation at the ori-
gin and the coproduct can be realised via the formula f(Q1+Q2, P1+P2) = f(1)(Q1, P1) f(2)(Q2;, P2),
where the isomorphism R[Q, P] @ R[Q, P] ~ R[Q1, P1, Q2, P»] is understood. This allows to com-
pute the explicit expression for the Hopf cocycle o: U(h) @ U(h) — U(n),

o(f,9) = (f*x9) lg=0=p, Vf,geR[Q,P]. (3.4)

In practice, the only non-zero values are o(P", Q™) = n! C™ for n € N. [

Recall that the universal enveloping algebra U/, (g) of a Lie-Rinehart algebra (A, g,w) which is
projective over A is filtered with respect to the canonical filtration, where U, (g)_1 == 0, U, (g)o = A,
and for p > 0, U, (g), is the left A-submodule of U,(g) generated by ¢4(g)? (that is, products of
the image of g in U, (g) of length at most p). Using this fact, and in spite of Remark 3.13, one may
prove the following refinement of Lemma 3.12.

Proposition 3.14. Let w: g — b be an epimorphism of Lie-Rinehart algebras over A which are
projective as left A-modules. On the set 3 of unital A-coring splittings T': U, (h) — U.(g) of the
surjection U, () : Us(g) — UL(h) which are filtered with respect to the canonical filtrations, define
the equivalence relation

I~ o gr(l) =gr(I),

where gr(T): grid,(h) — grid,(g) denotes the graded map associated to T'. Then there is a bijective
correspondence between X/~ and the set of left A-linear splittings v: h —> g of m: g — .
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Proof. In Lemma 3.12, we constructed a (non-bijective) correspondence

Y 2 {yvihog|moy=idy},
r — s (35)
[y i=Sg08a(7)0 Sh_l — 7

because I'y is filtered since Sy, Sy, and S.(7) are all filtered as well with respect to the canonical
filtrations. Moreover, if v: h — g is a section of 7, then ', := Sg0S, (W)OSh_l satisfies I'youy = 1407,
independently of the projective bases chosen for g and b to construct Sq and Sy. Therefore, yr, =~y
(because ¢4 is injective by hypothesis).

As already observed in the proof of Lemma 1.12, gr(Sy) satisfies

r.(Sq
Sh(g) ~ g, (Sa(9)) £ (%) g (Ua(9)), X1 X Xo-- X +UL(9) <1

for all k > 0, and 0 elsewhere. That is to say, gr(Sgy) is the isomorphism of the PBW theorem,
independently of the projective basis chosen for g to construct Sg. Since for I' € ¥ the composition

h=SL(h) ~gr,(S.(h)) ), o U.(h)) LIRS (Ua(9)) £a(Ga)” gri(Sa(g)) = Si(g) =g

(3.6)
maps X € b to I'(X) € g, that is to say, it is exactly 7r, it is clear that sections of U, () with the
same graded associated give rise to the same section of w. Hence, the correspondence (3.5) factors
through the quotient 3/~. Denoting by [I'] the equivalence class of T" in X/~ it is still true that
L1 = 7-

Let now I' be a section in ¥. We want to show that gr(I') = gr(I'5,.) or, equivalently,

gr(Sy ") o gr() o gr(Sh) = gr(Sa(r)) = Sal)

as maps of A-corings from S,(h) to S.(g). Set &' = S;l oT 08y, Write Su(g) = A® SA(g)
and S,(h) = A@® S.(bh) as left A-modules, where both S,(g) and S,(h) are the kernels of the
respective counits, and endow S,(g) and S,(h) with the non-counital comultiplication A(z) =
Alz) —2®4 1 —1®, x for z € S,(h). Denote by wy: Su(g) — g the projection on the first
component. Then both gr(S’) and S,(7r) restrict to morphisms of non-counital A-corings from
S.(h) to S.(g) such that

wgogr(S) =gn(S) owy £ yrowy = Si(ar) 0wy = wy 0 Salyr),

where in (#) we used what we observed with (3.6). Therefore, by the uniqueness part of [MoeMr¢,
Prop. A.2], gr(S’) = Sa(yr) and so [Ty, | = [I'], which completes the proof. O

In more prosaic words, Proposition 3.14 states that the correspondence between A-linear sections
of m: g — b and filtered unital A-coring sections of U, (w): U,(g) — U.(h) is bijective up to
considering the graded associated.

3.3. Semi-direct sum Lie-Rinehart algebras and the smash product decomposition. Let
(A, h,w) be a Lie-Rinehart algebra and n be an A-Lie algebra such that both h and n are projective
as A-modules. Assume there is an action p: h — dery(n) as in Definition 1.4 and set g :=n 3 b;
equivalently, assume that the short exact sequence (1.1) splits as a sequence of Lie-Rinehart
algebras, in the sense that m admits a section v: h — g which is a morphism of Lie-Rinehart
algebras. By functoriality of the universal enveloping algebra construction, v induces a morphism
of left Hopf algebroids T': U, (h) — U.(g) and ITo ' = U, (1) oU,(7y) = Ua(m 0 y) = idy, (). Hence,
T" is a left Hopf algebroid section of II, and, in particular, it is an A-coring section. In addition,
being a morphism of A-rings as well, it satisfies

T (1UA(h)) = Ly, () and T(aru+bd)= F(ULA(ab)) =D(u)ta(ab) =arT(u)«d

for all a,be A, ue U,(h). Therefore, we can apply Theorem 2.9 together with Proposition 3.2 to
claim that

Ua(n) #, Ua(h) =~ Ua(g)
by means of b#u — bI'(u), where o: , U, (h) Qaer Us(h) « = Ua(n) is as in (2.8).
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Proposition 3.15. If a short exact sequence of projective Lie-Rinehart algebras as in (1.1) splits as
a sequence of Lie-Rinehart algebras, then the map o of (2.8) is trivial, that is, o (4 ® ser V) = € (uv)
for all u,v € U,(h). Moreover, the weak left U,(h)-action (2.9) is a proper left action turning
U(n) into a left U,(h)-module algebra.

Proof. Recall that
o UA(D) @acr Us(h) = Us(n), uQuor v+ 5(F(U(Q)'U(2))+)F(u(l))r(v(l))F(U(Q)U(Q))*'

As T' is a morphism of left Hopf algebroids, it is multiplicative, comultiplicative, counital, and
also a morphism of left Hopf structures, i.e., Egs. (1.23) and (1.36) hold. In particular, if we set
z = I'(uwv), then

o (U®uer v) = € (T(2)+) T(1)T(2)— 020 ¢ (24(2)) Tp)T— = TrT_ U2 g(2) = e(T(wv)) = € (wv),
where we suppressed the source map, that is, the canonical injection A — U ,(n) in the latter terms.
Furthermore,

uc(veb) = uwe (D) bl(w) ) =T(u):I'(v)+bT(v) -T(u) -
“Z2 P (uw) b (uv) - = (uv) & b,

and 1 b =T(1).bT(1)- = b for all u,v € U,(h) and b € U,(n), whence & is a left U, (h)-action.
To conclude, it is enough to observe that (2.1) entails that & turns U,(n) into a monoid in the
monoidal category of left U, (h)-modules. O

It follows that U, (n) #, U, (h) coincides, in fact, with the smash product U, (n) #U, () in the
sense of §1.8. Summing up, we proved the following.

Theorem 3.16. If g ~n 3 n is a semi-direct sum of the A-Lie algebra n and of the Lie-Rinehart
algebra (A, h,w), both projective over A, then we have an isomorphism

Ui(g) ~Us(n 2 h) = Us(n) #U.(b)
of A-rings and right U, (h)-comodule algebras.

Recall that any Lie-Rinehart splitting v: h — g of a short exact sequence 0 » n = g - h — 0 of
Lie-Rinehart algebras over A gives rise to a splitting I" := U, (7y) of the surjection U, (7): UA(g) —
U, (h) as left Hopf algebroid map. Thus, analogously to what we observed at the end of §3.2, we
have the following result.

Proposition 3.17. Let w: g — b be an epimorphism of Lie-Rinehart algebras over A which are
projective as left A-modules. Then there is a bijective correspondence between splittings I' of the
surjection U, (m): Us(g) — UL(H) as map of left Hopf algebroids and splittings v of m: g — b as
Lie-Rinehart algebra map.

Proof. In view of [MoeMr¢, Thm. 3.1], the functor U, : LieRin, — Bialgd , induces an equivalence
of categories between the full subcategory of Lie-Rinehart algebras over A which are projective as
left A-modules and the category of cocomplete graded projective A-bialgebroids, which entails that
we have a bijection

LieRin, (h, g) = Bialgd ,(Ua(h),Ua(g)), 7+ Ua(7)-
By this, it is clear that « is a section of 7 if and only if ¢, () is a section of U, (7). O

3.4. Equivalences of crossed product decompositions. In this subsection, in the spirit of
[Mo, Thm. 2.8], we would like to relate the o-twisted crossed product construction from Definition
2.4 to the universal enveloping algebra of the curved semi-direct sum of Lie-Rinehart algebras from
Definition 1.7, or rather to a certain quotient of it.

More precisely, let (A,H) be a Lie-Rinehart algebra and ¢:: A — R be an A-algebra, seen
as a Lie-Rinehart algebra with the bracket given by the commutator and with trivial anchor,
denoted (A,fR). Assume there exists an A-module map h — dery(R), X — Vx, and a 2-cochain
TE HomA(/\i b, R) subject to V7 = 0, and such that Eq. (1.6) for the curvature (1.7) is fulfilled.
Then we may consider the curved semi-direct sum Lie-Rinehart algebra R 3, h as in Definition
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1.7 and the canonical inclusion 3: R - R 3, b, r — (r,0), induces an injective A-ring morphism
U, (R) > U, (R 3, ), which we will treat, by slight abuse of notation, as an inclusion.

Definition 3.18. Under the standing assumptions, we define
R x;Ush) =U,(R >, b)/.I, (3.7

the quotient of the universal enveloping algebra of the curved semi-direct sum R 3, § by the
two-sided ideal .# generated by

S ={ly, o0 — lp, Teu o0 —rerr’, Yr,r'eR} (3.8)
in UA (% D, b).
The subsequent theorem generalises [Mo, Thm. 2.8] to the realm of Lie-Rinehart algebras.

Theorem 3.19. Let t: A — R be an A-algebra with associated A-Lie algebra (A,R) and let (A, b)
be a Lie-Rinehart algebra such that both R and by are projective as left A-modules. Then for an
A-ring S the following are equivalent:

(i) S ~ R x,;U,(h) in the sense of Definition 3.18.

(i) S ~ R#,U,(h) in the sense of Definition 2./.

Proof. (i) = (ii): in this implication, we shall strictly follow an argument of the corresponding
part in the proof of [Mo, Thm. 2.8], which seems to go back to [BoGaRe, McC].
Assume S ~ R x,U,(h) as in (3.7), which yields a short exact sequence

0-R—-R2,h—=Hh—-0

of Lie-Rinehart algebras so that we are in the situation of Theorem 3.10: one obtains the isomorphism
\1/
Us(R 37 b) == Ua(R) #o Ua(b)

of A-rings, where o: U, () ®@acr U4(h) — U, (R) is a Hopf 2-cocycle, ® and ¥ are explicitly given
by (2.10) and (2.11) in Theorem 2.9, respectively, and U, (R) constitutes the left Hopf kernel in
the sense of (2.2) with the property that ¥(r) = r #, 1 for all r € U,(R).

Let us abbreviate £ := R 3, h. A closer look at (2.10) reveals that both ® and ¥ are left U, (R)-
linear morphisms with respect to the ordinary left multiplication in U, (£) and the regular left
U4 (R)-module structure on U, (R) #, U4 (h), respectively. In particular, we have an isomorphism
UA(L) ~ Us(R) ®4 UL(h) as left U,(MR)-modules which entails that U, (L) is a projective left
U, (M)-module since ) and hence U, (h) are projective left A-modules.

Next, as in [Mo, Thm. 2.8], let .#, be the two-sided ideal in U,(R) generated by the set .

in (3.8). One then clearly has U,(R)/.% ~ R, whence 0 — .% = U,(R) & R — 0 is a short
exact sequence of U, (R)-bimodules. Moreover, by some diagram chasing and in view of the Snake
Lemma one may check that the following diagram of left U, (9R)-modules has exact rows and is
commutative

0

o ®a uA(h) 4>UA(9%) ®a Z/{A(b) R®. Z/{A(h)

: N

0 —— H Qu 00y Ua (L) —— U,(R) Qu , o0y Ua(L) ——= R @y, (o1y Ua (L) ——0

| : -

FoUL(L) U (L) U (L) AUL(L) —=0

0

where the upper vertical arrows are induced by ® and the lower central vertical arrow is the
canonical isomorphism given by the U, (9%)-module structure of U, (£) (i.e., the composition of the
central vertical arrows is ®). That is,

R®4U4(h) ~ UL(L)/ A UA(L)
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as left U, (M)-modules. Below, we show that .# = FU,(L). Then R®, U, (h) inherits a k-algebra
structure as quotient of U, (R) #, U, (h) by the ideal S #, U4 (h) == S ®4 U4 (h). In particular,
o becomes closed under the measuring of U, (h) on U,(R) and hence R becomes a U, (h)-measured
A-ring. Tt follows that R ®, U, (h) becomes the o-twisted crossed product R #5U,(h), where
:Us(H) ®aor Us(h) — R is o under the quotient map, which is still a Hopf 2-cocycle, and

R#:U.(h) ~U.(L)/S.

We are left with showing that .# = . U,(L), which is done completely analogous to [McC,
Thm. 2.8]. One obviously has .#, € .7, hence S U, (L) S I UL(L) = &, whereas, on the other
side, for all r,s,t € R and X € b,

(r, X)((5,0)(¢,0) = (st,0)) = (5,0)(,0)(r, X) + (s,0)([r, ], 0) + (5,0)(Vxt,0)
+ ([ 5], 0)(¢,0) + (Vxs,0)(¢,0) — (st,0)(r, X)
— (s[r,1],0) = ([r, s]¢,0) = (Vx ()t,0) = (sVx(2),0)

= ((5,0)(t,0) — (st,0))(r, X) + .7,

using (1.8) and the fact that Vx € derk(R) by construction, and where we denoted the product in
U, (L) by juxtaposition. Likewise, one sees that (r, X)(1y, ) — 1z) = (1u, 0 — 1r)(r, X). As a
consequence, £. € .7 £ + .7, and therefore U, (L)% € FHUL(L), from which we obtain

S = uA(s)yuA(S) - Z/[A(E) jOZ/{A(S) - fOZ/{A(S)

as . € %, which ends the proof of this implication.

(ii) = (i): it S ~ R#,U,(h) with respect to an R-valued 2-cocycle o: U, (h) @aor U4 (h) — R,
then R is in particular a o-twisted left ¢, (h)-module in the sense of Definition 2.2 by means of the
measuring : U, (h) ® R — R. Restricting this measuring to generators yields a map

V:h® R — R, XQ@ur—Vxr=Xor,

such that Vx € dery(R) for any X € b, as follows from (2.1) along with (1.37). Moreover, it is
easy to see that V defines a connection in the sense of Egs. (1.5) with curvature

QX)Y) =[7(X,Y), -], (3.9)
where
7(X,Y) = o(X,Y) — oY, X)
defines a (Lie-Rinehart) 2-cocycle in the sense of Eq. (1.4), and such that the curvature formula
(1.6) is fulfilled: indeed, for all a € A and X € b, we have

Xoua) = (R8,e) (18, X)(Ua) @4 1) = (RO, 2) (184 X)(1©, 5(a)))
e L(E(X < a)) (20 X(a)
and, by using the A-bilinearity of the measuring as in Definition 2.1, along with (2.1) and (1.37),
Voxr = (aX)or=1(a)(X 1) =aVxr,
Vx(ar) = X & (o)) = (Xo) & ua) (X &)
020 (X (o L(a))r +ua)( X 1) L X(a)r + aVxr,
which are Egs. (1.5) that define a left (A, h)-connection. Moreover, observe that for X,Y € b from
property (v) in Definition 2.2 follows, again with Eq. (1.37),
XeoYeor)=cX,Y)r—ro(X,Y)+(XY)or=[cX,Y),rla + (XY)or,

where we used o(1,1) = 15 as well. Hence,

VxVyr —=VyVxr—Vixyr=Xo Yor) Yo (Xor) - (XY)er+(YX)or

= [0(X,Y),r]w — [0(Y, X), r]ns = [7(X,Y), r]m

which proves (3.9). Finally, that 7 € Hom ,( Alh, N) is a 2-cocycle, i.e., an A-bilinear map that

fulfils V7 = 0 is seen as follows: taking once more Eq. (1.37) into account, properties (i) and
(ii) in Definition 2.2 guarantee the A-bilinearity of o when restricted to elements in h; hence

(3.10)
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the A-bilinearity of 7. Furthermore, applying property (iii) in Definition 2.2 to three elements
X,Y, Z € b, yields the familiar cocycle condition

XoolV,Z2)—o(XY,Z)+0(X,YZ) =0,

with the help of which and Vxr = X o r it is a longish but straightforward check that
Vr(X,Y,Z)=Vx1(Y,Z) +Vy7(Z,X) + Vz7(X,Y)
- T([Xv Y]vZ) - T([Zv X],Y) - T([Y7 Z]7X)

vanishes. Hence, as in Proposition 1.5, we can build the Lie-Rinehart algebra (A, £) = (4,8 3, bh)
and its enveloping algebra U, (£). Assuming S = R #, U, (h), define the following maps

Po: £ G, (T,X)HT®A1+1®AX»

da: A—> S, a—1la)®, 1.

It is a straightforward check that ¢¢ is a map of k-Lie algebras and ¢, is a map of k-algebras, and
that they fulfil Egs. (1.10). Hence, as in §1.4, by the universal property they induce a morphism
®: U,(L) — S of k-algebras and, in view of Remark 1.9, even A-rings. As obviously . C ker @,
this descends to a well-defined map

D: UL (L)) I — S.
On the other hand, define a map (of R-modules) ¥: S — U, (L) by setting
r®a4 1 (r,0), r®s X — (r,0)(0, X),
in degree zero and one, for r € R and X € b, and on general PBW generators recursively by
rQ@auX = U(r @, u)V(1®.X) — ¥ (ro(uny, X) Qi u)

for u e U,(h), X € b, r € R. Tt is a simple check (e.g., in degree zero) that ¥ is not a morphism of
A-rings, but it induces one if followed by the projection U, (£) — U, (L)/.Z, that is,

T: S - UL(L)).7,

is a morphism of A-rings by mere construction. That ¥ inverts ® follows by an equally simple
induction argument: in degree 1 this is straightforward, and as for the induction step, we have in
degree n + 1, considering that the coproduct is a degree zero map:

(PoV) (r@,suX)=(Po¥) (r®,u) (Po¥) (1®,X)— (PoV) (ra(u(l),X) ®. u(2))
= (r@au)(1®a X) —ro(uny, X) ®a u)
=rQ®4uX,

hence ® o ¥ = id, which along with the similarly straightforward check of ¥ o ® = id concludes the
proof. O

4. GEOMETRIC EXAMPLES

In this section, we present a few geometric instances of our main results in the framework of
transformation Lie algebroids, of Atiyah algebroids, and of foliations. Let us begin by discussing
a straightforward algebraic analogue of transformation and Atiyah algebroids in the language of
Lie-Rinehart algebras. Throughout the section, let us fix a commutative k-algebra A, a Lie algebra
h and a representation of h on A by derivations, i.e., a Lie algebra morphism

r: h — der(4), v vf, (4.1)
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4.1. Transformation Lie algebroids. To start with, we provide the definition of a transformation
Lie-Rinehart algebra by finding inspiration from the geometric notion of a transformation Lie
algebroid.

Definition 4.1 (Transformation Lie-Rinehart algebra). Consider the Lie algebra h as a Lie-
Rinehart algebra over k of the form (k, b,0). The free A-module A® h endowed with the structure
of a Lie-Rinehart algebra over A as in Proposition 1.23(b), that is, via the A-linear extension

A®b — der(A), f®u— fof

of the representation r in (4.1), as anchor, and via

[f®v.g0uw] = (f9)®@[v,w] + (fv¥(9)) ®w — (9u'(f)) ®v,  Vf.geA, Yvweb, (42)

as Lie bracket, will be denoted A x § and called a transformation Lie-Rinehart algebra.

Ezample 4.2 (Transformation Lie algebroid). Consider the action of a Lie algebra b on a smooth
manifold M. The corresponding transformation Lie algebroid (see, for example, [Mac3, Prop.
4.1.2]) will be denoted M x b. It is nothing but the trivial vector bundle M x b endowed with the
structure of a Lie algebroid such that the space of its smooth global sections is the transformation
Lie-Rinehart algebra I'(M x §) = C* (M) x b. |

As a side remark, let us mention the following corollary of Proposition 1.23 which, despite its
appearance, is not related to our main Theorem 2.9.

Proposition 4.3. The universal enveloping algebra of a transformation Lie-Rinehart algebra A x b
s isomorphic to the smash product

U (Axh) ~A#U(bh) (4.3)
of the commutative algebra A with the universal enveloping algebra of the Lie algebra b.

Ezample 4.4 (Differential operators on a Lie group). The universal enveloping algebra of the Lie
algebra g of a Lie group G can be defined geometrically as the associative algebra of invariant
differential operators on G. More precisely, first recall that the tangent bundle of G admits a
trivialisation TG ~ G x g via the Maurer-Cartan one-form. As the Lie group regularly acts on
itself via the (left or right) multiplication, the Lie algebra g acts on G and the above trivialisation
induces the isomorphism of Lie-Rinehart algebras

X(G)~C*(G) x g, (4.4)
which encodes the fact that the Lie algebra of vector fields on G that are invariant under (right,
resp. left) translations is isomorphic to g, that is, X(G)¢ ~ g. On the other hand, for any smooth
manifold M, there is an isomorphism (see, for example, [NiWeXu, p. 133])

MCI(M)(X(M)) = 'D(M), (4'5)
as follows from applying [NiWeXu, Thm. 3] to [NiWeXu, Ex. 1], where X(M) denotes the Lie-
Rinehart algebra of smooth vector fields and D(M) the algebra of differential operators on M.
Applying this to M = G, one obtains

D(G) ~Ucr ) (X(G)) =~ C*(G) #U(g), (4.6)
as follows from Proposition 4.3 putting A = C*(G) in (4.3). Therefore, we recover the well-known

fact that the associative algebra of invariant differential operators on a Lie group is isomorphic to
the universal enveloping algebra of its Lie algebra, that is, D(G)¢ ~ U(g). |

4.2. Atiyah algebroid of a principal bundle. Recall that the algebra A is assumed to be
commutative and an h-module via the representation r from (4.1).

Definition 4.5 (Atiyah algebra). Let h* < der(A) denote the image of the representation r. The
centraliser of h¥ inside the Lie algebra der(A) will be denoted

der(A)" == {X e der(A) | [v¥, X] =0, Yv € b}, (4.7)
and called the Atiyah algebra of the h-module A.
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Proposition 4.6. Let
AY = {fe A|v(f) =0, Vveh} (4.8)

denote the commutative subalgebra of A spanned by elements that are invariant under the action
of the Lie algebra . The commutative subalgebra A" C A is a module over the Lie subalgebra
der(A)" < ver(A). The Atiyah algebra is a Lie-Rinehart algebra over AY whose anchor

p:oer(A)? - ver(AY), X = X0, (4.9)
1s defined by the above restriction.

Proof. Let X € der(A)" be an h-invariant derivation on the commutative algebra A, that is,
X € der(A) with [vf, X] = 0 for any v € h. Let f € A", that is, f € A with v*(f) = 0 for any v € b.
One can explicitly see that X (f) € A" since

V(X (f)) = (FX)(f) = (XoA)(f) = X (F(f)) = 0. (4.10)

It is then straightforward to check that the commutative subalgebra A% C A is indeed a module of
the Lie subalgebra der(A)? € der(A). One can also explicitly check that fX € der(A)Y since

[, fX] = v*(f) X + f[+%,X]=0. (4.11)

The Atiyah algebra der(A)Y is therefore an A"-module and the AP-linear map (4.9) is defined as
the restriction to the commutative subalgebra A" € A. Let Y € det(A)" be another h-invariant
derivation. The Leibniz rule holds since

[X, /Y] = X(f)Y + f[X,)Y] (4.12)
for any derivations X, Y, but X(f) = p(X)(f) since f € A". This proves that the Atiyah algebra
der(A)" is a Lie-Rinehart algebra over A", O

Ezample 4.7 (Atiyah algebroid of a principal bundle). Let P be the total space of a principal
H-bundle over P/H. We will assume from now on that the structure group H is connected, so that
if we are given a vector bundle E over P with an action of H on F projecting to the given action on
P, then the equivariance of a global section of this vector bundle E over P under the action of the
Lie group H is equivalent to its (infinitesimal) invariance under the corresponding action of the Lie
algebra b (this is a direct corollary of [Kos, Thm. 2.10]). In particular, the commutative subalgebra
of A = C*(P) spanned by the H-invariant functions on the total space is A" = C*(P)". It is
isomorphic to the commutative algebra of functions on the base space: C*(P)Y ~ C*(P/H). The
space of orbits TP/H is a Lie algebroid over P/H called the Atiyah algebroid of the principal
bundle. Its global sections are the H-invariant vector fields on P, which span the Atiyah algebra
[(TP/H) = X(P)". ]

Definition 4.8 (Transitive Lie-Rinehart algebra). A Lie-Rinehart algebra such that its anchor is
surjective will be called a transitive Lie-Rinehart algebra.

This choice of terminology is motivated by the fact that the space of global sections of a transitive
Lie algebroid (see, for example, [Macl, p. 100] or [Mac3, Def. 3.3.1]) over a smooth manifold M is
a transitive Lie-Rinehart algebra over C* (M) in the above sense.

Lemma 4.9. Consider a transitive Lie-Rinehart algebra g over A with anchor p. There is a short
exact sequence of Lie-Rinehart algebras

0—>kerp—g % der(A) — 0, (4.13)
where the kernel of the anchor is a Lie-Rinehart ideal (as in Example 1.3).
Definition 4.10. Let us denote the kernel of p from (4.9) by
ann(A%) == {X e ver(A)" | X(f) =0, Vfe A"}, (4.14)
and call it the annihilator of the module AY over the Atiyah algebra der(A)".
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With these notations, we always have an exact sequence of Lie-Rinehart algebras
0 — ann(A") < der(A)" — der(AD). (4.15)

If the Atiyah algebra is transitive, then det(A)" is a Lie-Rinehart algebra extension of det(AY) by
ann(A"), that is, there is a short exact sequence of Lie-Rinehart algebras

0 — ann(A") < der(A4)" — der(A4A") -0 (4.16)

in the sense of Equation (1.1). Suppose that ann(A"), der(A)", and der(AY) are projective as
A-modules. Then, by Theorem 3.10, any A-linear splitting (which we may call an invariant
Ehresmann connection, by finding inspiration from the geometric setting, see Example 4.11 below)
of this short exact sequence leads to a factorisation as a o-twisted crossed product

Uno (0et(A)") = Uyo (ann(A)) #, U (der(AY)). (4.17)

In fact, up to the relation from Proposition 3.14, invariant Ehresmann connections on der(A)"
correspond to decompositions of U s (Det(A)h) as in (4.17). Analogously, Lie-Rinehart algebra
splittings (which we may call flat invariant Ehresmann connections) of (4.16) correspond to
factorisations as smash product

Uan (dex(A)") > Uyo (ann(A")) #Ua0 (der(A)), (4.18)
by Proposition 3.17, that is, (4.17) with respect to a trivial cocycle o.

Ezample 4.11 (Atiyah sequence of a principal bundle). Continuing Example 4.7 and using the
notation introduced in Example 4.2, the transformation Lie algebroid P x b for the free action of
H on P is endowed with a fibrewise injective anchor. The vertical distribution VP < T'P with the
commutator bracket is canonically isomorphic to P x h as Lie algebroids over P and it gives rise to
the short exact sequence

0— VP/H < TP/H — T (P/H) — 0 (4.19)

of Lie algebroids over P/H, which is called the Atiyah sequence of the principal H-bundle P (see
[Mac3, §3.2]). The isomorphism VP ~ P x h of Lie algebroids over P induces the isomorphism

B(P) :=T(VP) ~ C*(P) » b (4.20)

of Lie-Rinehart algebras over C*(P). The space I'(V P/H) is, by construction, the annihilator
ann(C™(P)") of the module C*(P)" ~ C*(P/H) of the Atiyah algebra. The vector bundle
P x 44 b associated via the adjoint representation of H on h to the principal H-bundle P is
canonically isomorphic to VP/H as a vector bundle over P/H. To summarise,

ann(C*(P)") =T(VP/H) = B(P)" ~ (P x aah) = T(P » b)". (4.21)

In particular, (4.15) becomes exact as in (4.16). More explicitly, the Atiyah sequence (4.19) implies
the short exact sequence

0 — B(P)" — X(P)" - X (P/H) - 0 (4.22)

of Lie-Rinehart algebras over C*(P/H). In this setting, invariant Ehresmann connections (i.e.,
splittings of (4.19) or, equivalently, of (4.22)) give rise to decompositions as crossed products

Ucr ey (X(P)") = Ucon ) (TB(P)") #, D(P/H)

for a certain cocycle o constructed as in Theorem 2.9, where D has the same meaning as in (4.5). In
the same way, flat invariant Ehresmann connections give rise to decompositions as smash products
(that is, with respect to a trivial cocycle o). In other words, a (flat or curved) invariant Ehresmann
connection on a principal bundle provides a factorisation of the associative algebra generated by the
invariant vector fields on the total space as a (smash or crossed) product of the algebra generated
by the vertical ones and the algebra of differential operators on the base manifold. We will come
back to this topic, in more detail, in §4.5. [



UEA OF L-R ALGEBRAS: CROSSED PRODUCTS, CONNECTIONS, AND CURVATURE 39

4.3. Atiyah algebroid of a vector bundle. The Atiyah algebroid of the frame bundle of a
vector bundle is a principal bundle over the same base with the general linear group as structure
group. It is often called the Atiyah algebroid of the vector bundle.

The Atiyah algebroid of a vector bundle admits a celebrated equivalent (more algebraic) definition
in terms of covariant derivatives.

Definition 4.12 (Covariant derivative). Let V be an A-module. A pair (X, V) consisting of a
derivation X € der(A) of the algebra A and an endomorphism V of the underlying vector space of
V obeying the Leibniz rule

V(fo) = X(f)o+ fVa, VfeA, YoeV, (4.23)

can be interpreted as an infinitesimal automorphism of the A-module V, and will be called a
covariant derivative on the A-module V along the derivation X.

In [KosMac, §1] and [Hue, p. 72], covariant derivatives were called derivative endomorphisms
and infinitesimal gauge transformations, respectively.

Definition 4.13 (Atiyah algebra of a module). The Lie algebra cdet, (V) of all covariant derivatives
V on the A-module V is called the Atiyah algebra of the A-module V.

Proposition 4.14. The Atiyah algebra of the A-module V is endowed with the structure of a
Lie-Rinehart algebra over A by means of the anchor

o: cdet, (V) — der(A4), (X,V)— X, (4.24)
which maps a covariant derivative (X, V) along a derivation X onto the latter derivation.

The proof is a routine check. Proposition 4.14 is well-known in the Lie algebroid case, see the
next example.

Ezample 4.15 (Atiyah algebroid of a vector bundle). Let A = C*(M) and V = T'(F) be the module
of sections of a vector bundle F over a smooth manifold M. The Lie-Rinehart algebra cdet, (V)
defines a transitive Lie algebroid [KosMac, Thm. 1.4] called the Atiyah algebroid of the vector
bundle E. In this case, the Atiyah algebra cder,(V) of the A-module V is the Lie-Rinehart algebra
extension of the derivation algebra der(A) by the general linear algebra gl,(V), that is, End (V)
endowed with the A-Lie algebra structure coming from the commutator bracket. Indeed, A-linear
morphisms on the A-module V coincide with covariant derivatives along the trivial derivation
X = 0. In other words, there is a short exact sequence of Lie-Rinehart algebras

0— gl (V) = et (V) — der(4) — 0, (4.25)
which is called the Atiyah sequence of the vector bundle E. [ ]

A left (A, der,(V))-connection, in the sense of §1.2, on the A-module V is equivalent to a
splitting of A-modules
ver(A) — cver,(V), X — Vyx (4.26)

of the short exact sequence (4.25). The connection is flat if and only if the section (4.26) is a
morphism of Lie-Rinehart algebras. In the geometric case of a vector bundle, this algebraic point
of view reproduces the modern textbook definition (dating back to Koszul in 1950, cf. [Kosz]) of a
linear connection. In view of Theorem 3.10, Proposition 3.14, and Proposition 3.17, the datum of
a linear connection is essentially the same as the datum of a crossed product decomposition

Ua(cder, (V) = Uy (gl (V) #5 U (det(A))

for some cocycle o (modulo the equivalence relation described in Proposition 3.14), while the
datum of a flat linear connection is equivalent to the datum of a smash product decomposition.
Furthermore, in view of Theorem 3.19, the quotient of I/, (cbet A(V)) by the two-sided ideal .7,
as in Definition 3.18, is isomorphic to the crossed product
Ui (cvet, (V) /I =~ End (V) #, U (0ex(A)) (4.27)

by setting R = End,(V), R = gl,(V), and h = der(A4).



40 X. BEKAERT, N. KOWALZIG, AND P. SARACCO

Remark 4.16. In general, the surjectivity of the anchor (4.24) cannot be given for granted. If V is
an arbitrary A-module, then cdet, (V) coincides with the Lie-Rinehart algebra DO(A, der(A), V)
introduced in [Hue, p. 72] (see also [Sa2, §4.3]). In the general case, one may always construct an
exact sequence

0— gl (V) = cder, (V) — der(A4) (4.28)

as in [Hue, Eq. (2.11.8)], and V is called det(A)-normal if the right-most morphism is surjective.
Hence V admits an (A, der(A))-connection in the sense of §1.2 if and only if it is det(A)-normal,
and the short exact sequence splits as A-modules, see also [Hue, Rem. 2.16]. [ |

4.4. Foliations. An involutive distribution D on M can be thought as a Lie algebroid D over M
with injective anchor p: D — T'M [Mac3, Ex. 3.3.5]. The generalisation by Sussmann [Su] of the
Frobenius Theorem to involutive distributions of locally finite type ensures that p(D) € TM is an
integrable distribution, i.e., it arises from a foliation. As any vector bundle, the distributions and
Lie algebroids that we are considering are implicitly assumed to be locally of finite rank. However,
they need not be of constant rank. Accordingly, our foliations are allowed to be mildly singular
(see [Deb, §1] for a precise statement). Summing up, there is a one-to-one correspondence between:
(7) a foliation of M,
(i¢) an involutive distribution on M,
(éi7) a Lie subalgebroid over M of the tangent bundle T'M,
(iv) a finitely generated projective Lie-Rinehart algebra over C* (M) with injective anchor,

) a graded-projective sub-bialgebroid with a finitely generated space of primitives over C* (M)
of the cocommutative bialgebroid D(M) spanned by differential operators on M.

i
(v

Note that other characterisations of foliations exist, e.g., in terms of Lie groupoids [Deb, MoeCral.

The equivalences (i) < (i) < (iii) < (iv) are immediate. Indeed, the first ones were explained
above (see also [Deb, Ex. 1.3 & 1.6]) and the last one (iii) < (iv) follows from the equivalence
between the category of Lie algebroids F over M and the category of finitely generated projective
Lie-Rinehart algebras I'(E) over C*(M). Finally, the equivalence (iv) < (v) is ensured by the
equivalence of the categories of projective Lie-Rinehart algebras and of cocomplete graded-projective
left bialgebroids, cf. the Cartier-Milnor-Moore type theorem of [MoeMr¢, Thm. 4.1].

The sub-bialgebroid over C* (M) in (v), corresponding to an involutive distribution D c T'M,
will be denoted
T(D) = UCD(M) (F (p(D))) .
Its elements are differential operators on M tangential to the leaves. For any involutive distribution
D c T'M, there is a short exact sequence of vector bundles over M,
0->D—TM —» N — 0,

where N is the quotient bundle made of the normal bundles of the leaves. Let SN = @%’ZOS’“N
stand for the bundle of symmetric tensor products of the normal bundle. Applying Proposition
1.15 in the present setting gives that

as a module over the associative algebra T (D).

Ezample 4.17 (Vertical foliation of a fibre bundle). For a fibre bundle 7: E — M, the base manifold
M can be identified with the space of vertical leaves (i.e., the fibres). The Lie algebroid over the
total space F associated to the vertical foliation is the vertical distribution V E = ker 7, on F with
the embedding i: VE — TFE as anchor. The vertical distribution can be seen as a Lie algebra
bundle, i.e., a Lie algebroid over M with trivial anchor 7y oi: VE — T M. The Lie-Rinehart
algebra U(F) c X(F) over C*(E) is spanned by vertical vector fields on E, i.e., tangential to the
fibres. The sub-bialgebroid over C*(E) corresponding to the vertical distribution will be denoted

The pullback 7*: C*(M) — C*(FE) provides an embedding of the base algebra inside the total
algebra, hence the algebra D(FE) of differential operators on E is a C*(M)-ring. A vector field on
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E, seen as a (first-order) differential operator on E, is vertical if and only if it is C* (M)-linear.
Consequently, the algebra V(FE) of differential operators tangential to the fibres is a C* (M )-algebra.
The pullback vector bundle 7*T M fits into the following short exact sequence

0>VE—STE —»a"TM — 0
of vector bundles over F, giving rise to the following exact sequence
0= B(E) = X(E) — C*(E) @c sy X(M) = 0

of finitely generated projective C*(FE)-modules. Therefore, in view of Proposition 1.15 and the
isomorphism (4.5), the algebra D(E) of differential operators on the total space F satisfies

D(E) ~ V(E) Qc» ) D(STM)
as left V(E)-modules. |

Ezample 4.18 (Vertical foliation of a principal bundle). Recall from Example 4.11 that the vertical
distribution V' P of a principal H-bundle with total space P is canonically isomorphic, as a Lie
algebroid over P, to the transformation Lie algebroid P x h. The corresponding isomorphism (4.20)
together with Proposition 4.3 and Example 4.17 imply that

V(P) ~ C*(P) #U(h).

In other words, the sub-bialgebroid V(P) c D(P) spanned by the differential operators on P
tangential to the fibres is isomorphic to the smash product of the commutative algebra C*(P)
with the universal enveloping algebra of h. [ ]

4.5. More on Atiyah algebroids. The Atiyah algebra ' (TP/H) ~ X(P)" of a principal H-
bundle P is spanned by H-invariant vector fields on P. A natural question is when its universal
enveloping algebra is spanned by H-invariant differential operators on P as well, that is,

? b
Uco(p/iy (X(P)") = D(P)" ~ Ucw(p) (X(P)), (4.29)
or, more generally,
U (det(A)") 2 U, (dex(A))" (4.30)

for all A and h. A favourable case is given by a Klein geometry.

Example 4.19 (Klein geometry). Consider a Klein geometry, i.e., a pair made of a Lie group G
and a closed Lie subgroup H < G such that G/H is connected. It defines a principal H-bundle
G over G/H. In this case, A = C*(G) and the representation (4.1) is given by the inclusion of b
into X(G) as left G-invariant vector fields. This representation r is the infinitesimal counterpart of
the right action of H on G via right multiplication. A function on the space G/H of left cosets
gH is equivalent to a function f on G which is right H-invariant. For simplicity, the Lie group H
is assumed to be connected, thus A" ~ C*(G/H) for the commutative algebra defined in (4.8).
The Lie-Rinehart algebra der(A) is here the algebra X(G) ~ C*(G) x g of vector fields on the Lie
group G, see (4.4), where g is the Lie algebra of G. In particular, der(A) is the free left A-module
generated (up to isomorphism) by (left or right) invariant vector fields. For our purposes, it is more
convenient to realise g as right invariant vector fields on GG, which are the infinitesimal generators
for the left action of G on itself via left multiplication. The latter induces a left G-action on
G/H; accordingly, there is a non-trivial representation of g on C*(G/H), and the corresponding
transformation Lie-Rinehart algebra will be denoted C*(G/H) x g. The Atiyah algebra der(A)Y is
isomorphic to the transformation Lie-Rinehart algebra of the h-module C*(G/H):

X(G)" ~ C*(G/H) x g, (4.31)

as follows from (4.4). In fact, consider a vector field X = } . a;X; € X(G) with a;, € C*(G) and
X; € g for all i. Note that X € X(G)" if and only if v*(a;) = 0 for all v € b, since

0= [vﬁ,zi aiXi] =>.a [vﬁ7Xi] + 30 (a;) Xi = X, 0F (a;) X5,

where we used that right G-invariant vector fields always commute with left G-invariant ones.
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The isomorphism (4.31) and Proposition 4.3 imply that the universal enveloping algebra of the
Atiyah algebra of a Klein geometry H < G is isomorphic to the smash product of the commutative
algebra of functions on the coset space G/H with the universal enveloping algebra of g:

Uon(aymy (X(G)") ~ C7(G/H) # U g). (4.32)

Moreover, the isomorphism (4.6) implies

D(G)" = Uow(c) (X(G))" = C7(G/H) #U g),
where the last isomorphism follows from the fact that the universal enveloping algebra U(g) is freely
generated by right G-invariant differential operators on G, which provide a basis for Uc» (q) (%(G))
as a left A-module and which already commute with the images v* of the elements v from . This
proves that (4.29) holds for Klein geometries:

Ucr (i) (X(G)Y) ~ D(G)" = Upr () (B(@)) "
In particular, the universal enveloping algebra of the Atiyah algebra of a Klein geometry H < G is
spanned by H-invariant differential operators on G. |

In general, the isomorphism (4.30) holds when det(A) is freely generated by elements from
der(A)Y as a left A-module, for essentially the same reason as in Example 4.19. In general, we
always have a canonical AY-ring morphism from the left-hand to the right-hand side.

Proposition 4.20. Let b be a Lie algebra acting by derivations on a commutative algebra A via
(4.1). There always exists a morphism of A"-rings

®: Uyn (ver(A)) > U, (Det(A))h
induced by the universal property of Uy (Det(A)h).
Proof. Set 9 := der(A) and U = Ug(h). If we extend r to an action of U on A (in fact, A becomes

a U-module algebra) and if we define an additional right U-action on A by restriction of scalars
along the counit € of U, that is a - u := e(u)a for all a € A and u € U, then

AY = Z,(A) = ;Hom,(U,A) ={ae A|lu-a=a-uforallue U},
where A" was defined in (4.8). In a similar way, b is represented on the vector space ? via
b_)g[]k(o)7 U= [vﬁa_]a

and hence we have a left U-module structure on 0 induced by it. By defining again a right U-module
structure on 0 by restriction of scalars along ¢, we find that

2" = Z,(0) = yHomy (U,0) ={6€d|u-d=6-uforallueU}.
If we now consider the k-algebra morphism ¢,: A" € A 225 1(,(d) and the Lie algebra and left
AP-linear map ¢p: 09 €0 2 U, (9), then the universal property of U4 (D") implies that there
exists an AY-ring morphism
D' Uy, (07) — UL (D)
extending ¢,, because obviously
$2(8)pa(a) = ¢ala)da(8) = 1o (d)na(a) — na(a)no(d) = na (w(6)(a)) = ¢4(d(a))

for all a € AY and ¢ € 9. In addition, the Lie algebra map b 2 9 2% 1/, (d) induces a k-algebra
map R: U — U,(0), which makes U,(?) into a U-ring. By a direct computation,

R(X)¢ala) = 1o (r(X))nala) = na(a)ne(r(X)) + na (w(r(X))(a)) = ¢ala) R(X)
for all a € A" and all X € b, and
R(X)¢2(6) = na(r(X))ma(8) = 12 (0)m0(r(X)) + 1m0 ([1(X),6]) = ¢o(6)R(X)
for all 5 € 9" and all X € b, whence ®' lands, in fact, in
UD)={VeU,®)|u-V =RuV =VR(u) =V -uforal ue U}.
So, we have an A"-ring morphism ®: U, (07) — U, (0)Y as claimed. O
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However, the above canonical morphism of AY-ring in Proposition 4.20 need not be injective in
general, not even in the projective case, as explicitly shown by the following counterexample.

Ezample 4.21 (Weyl algebra). Consider a k-vector space V of dimension d. The symmetric algebra
SV is isomorphic to the algebra k[X¢] of polynomials in d variables X for i = 1,2,...,d, with
which it will sometimes be identified here. The Grothendieck algebra D(SV) ~ Usy (ver(SV))
of polynomial differential operators on the symmetric algebra is isomorphic to the Weyl algebra
Aq(k). As an SV-module, der(SV) ~ SV ® V*. We have

g DSV) ~ Sy, (SVOV*) ~S(V)®S(VF) ~ S(V@V*).

Equivalently, the graded algebra associated to the Weyl algebra is the algebra of polynomial
functions on T*V ~ V @ V*. Similarly, grd,(k) ~ k[X? P;]. Let h be the one-dimensional
Lie algebra acting on the commutative algebra k[X'] via a representation (4.1) whose image
h* < der(A) is spanned by the Euler vector field, reading explicitly

d
= Z X
i=1

Therefore, the commutative subalgebra (SV)" as in (4.8) is isomorphic to k, while the Atiyah
algebra der(SV)Y as in (4.7) is isomorphic to the Lie algebra gl (V). Moreover, the subalgebra
D(SV)" is spanned by polynomial differential operators on the symmetric algebra SV preserving the
rank of tensors. It is isomorphic to the centraliser of the Euler vector field inside the Weyl algebra,
which is spanned by sums of differential operators with as many coordinates X as derivatives Ox.

This subalgebra is generated by vector fields of the form X* 3 )”(] . In fact, let {T";} denote a basis

of gl (V). The morphism ®: Uy (gl (V)) — Usy (Det(SV)) is the algebra map extending the Lie
algebra map TZ i X ;’( = via the universal property. For d > 1, this morphism is surjective but
not injective. ThlS fact is easier to see at the level of their graded counterparts. On the one hand,

gr Uk (gl (V) = S(gh (V) 2 S(VeV*),
which is isomorphic to k[Y?;]. On the other hand,
g DSV 2SVaeVvH ~@PS(V)@S"(V*),

neN

which is isomorphic to the subalgebra of k[ X, P; ;] spanned by homogeneous polynomlals with the
same degree in X as in P. For instance, in degree two, S>(V ® V*) is of dimension 3(d* + 1)d,
while S*2(V@ V*)" ~ (V) @ S?(V*) is of dimension §(d + 1)2d*. The map gr ® reads explicitly
Y*; — X'P; in terms of k[Y";] and k[X"*, P;]. |

APPENDIX A. SOME TECHNICAL PROOFS

In this subsection, after recalling a few technical details concerning permutations, we collect
some of the technical proofs omitted from §3.

A.1. Useful things about permutations. Let us recall the following facts about permutations.

Definition A.1 (Shuffle). A permutation o € & is an (a,b)-shuffle (where a + b = k) if
o(l)<o(2)<---<o(a)and o(a+1) <o(a+2) <---<o(k). Let us denote by W, the subset
of (a,b)-shuffles. Its cardinality is (5)

Lemma A.2. Consider the assignment
Wap X (6y x 8y) = 6, (0,7) 00T,

where o € Wy, is an (a,b)-shuffle and 7 € &, x Sy, permutes {1,...,a} and {a+1,...,k} separately.
The above map is a bijection.
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Proof. Let 0,0’ € Wy and 7,7 € &, x &, and assume that o7 = ¢’7’. This implies that

o = o'7't~ L. Therefore
o(1) ¥ min{o(1),...,0(a)} = minf{o'r'r=1(1), ..., 0’7"t~ (a)}
) min{o’(1),...,0'(a)} ¥ o'(1)

where in () we used the fact that o and ¢’ are (a,b)-shuffles and in (x%) we used the fact that
both 7 and 7 just permute {1,...,a}. Analogously one shows inductively that (i) = ¢'(¢) for all
1 <@ < a, by considering o (i) = min{o(i),...,o0(a)}. Moreover,

o(k) = max{o(a +1),...,0(k)} = max{o’'7'77(a +1),...,0' 777 (k)}
= max{a (a+1),...,0'(k)} =o' (k)
and analogously (i) = ¢’(4) for all a +1 < ¢ < k. Therefore, the assignment
Wap x (S, x &) — Gy, (o,7) > 0oorT

is injective between sets of the same cardinality, whence it is bijective. O
Lemma A.3. The assignment

{(i k)eGr|1<i<k}x&r 16  ((i k),0)— (i koo (A1)
is a bijection.
Proof. 1f (z k) o= (j k) T then o = (z k) (j k) 7 and since 0,7 € &;_1, we should have that

k=olk)=( k)G k)rk)=( k)G k) k)= {2 Z:

Therefore, i = j and o = 7. Being (A.1) an injection between sets of the same cardinality, it is a
bijection. O

Recall also that for every p € &, we have a bijective correspondence {op | 0 € &1} < &y,
because Gy, is a group.

A.2. Proof of Theorem 1.13. By the combinatorics of permutations, we can now provide the
details of the proof of Theorem 1.13.

Proof of Theorem 1.13. For every k > 1 we have

KA (S(X1 X)) "= DT 0 (X0) 05 (X)) A (X ey X))

J1y-dk
ceSy,
= Z i (X1) -+ 05 (Xk)AU(Xja(n) "'A“(Xja(k))
J1se 0k
oeSy,
= Z 51 (X1) -+ 05, (Xw) < Z Xipo(r) " Xipo(r) ®4 Xipoesny 'ija(k)>
J1sdk s+t=k
€Sy PEWs ¢

2NN i (Xae) i (Kpot)) (1 Xe ®a X X )

Flseees Jji 0ES s+t=k
PEWS ¢

where W, ; € &), denotes the set of (s, t)-shuffles, while

s+t=k
aeWs ¢

(S®a4S) (As (X1 Xk)) =(S®a4 S < Z Xaq)  Xaw) ®a Xags1) -+ Xa(k))
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s+t=k Jlyeees Jt
aeWs ¢ BES
1
®a (s' Z Piits1 (Xa(tﬂ)) S Pl (Xoc(k)) Xiy(t+1) *° 'ij(k)>
Jt+1sJk
€S,
11
= 2 ga X e (Xaw) @i (Xaw) @i (Xawn) @5 (Xaw) -
s+t=k J1seees Jk
aeWs ¢ BeG:
€S 5

(1.15) 11
=7 2 ga 2 % (Kesm) e (Xapw) Pices (Kayean) -+ @5 (Xarw)
st+t=k J1seees Ik
aeWs ¢ BeEG,
VES

(le “ X ®a Xit41 "'Xjk) .
If we analyse the summand corresponding to

le e th ®A th+1 e Xjk’
it appears with coefficient

1
k! Z 2 i (Xoo1)) P (Xpo(r))

ceS st+t=k
pEW ¢

in the first sum and with coefficient
11
2 e Xasm) @ (Xasw) e (Xarwen) i (Kayi)
bt
BeG,1€C

in the second. In view of what is recalled in §A.1,

11
D qa%n (Xap@) @5, (Xap) i (Xaye+1)) i (Xavy(k))

s+t=k
aEW, ¢
BEG,vEG
11
= Z yg@jl(xru))"'%‘k(Xr(k))-
s+t=k = °°

TESK

On the other hand, since for every p € &, we have that {po | 0 € &} is in bijection with &y, we
also have that

1 1
E Z Z P (Xpo(l)) 2 (Xpo(k)) = g Z |Ws,t| P (Xa(l)) RN (Xcr(k))
’ ceS s+t=k . Py
pEWs,t S+t:k
1
- Z ﬁwjl (Xa(l)) * Pk (Xg(k)) .
oeSy,
s+t=Fk
Therefore Ay oS = (S®4 S) o As. The compatibility with the counit is clear. 0

A.3. Proof of Proposition 3.8. The following computational result will be helpful in completing
the proof of Proposition 3.8.

Lemma A.4. For everya€ A and X1,..., Xy € b, in U,(h) we have

X1 . -Xka = Z w (Xg(l)) W (Xa(t)) (a)XU(t+1) . 'Xa(k)7 (A2)

t+s=k
ceWy s

where, as usual, Wy s is the set of (¢, s)-shuffles as in §A.1.
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Proof. We proceed by induction on k& > 0. For k = 1, we have
Xa ‘2 aX +w(X)(a).
Assume then that

X1 te Xna = 2 w (Xg(l)) W (Xa(t)) (G)Xa(t+1) . -Xa(n), (A3)
t+s=n
oWy s

for all n < k — 1 and let us verify it for n = k. We have
Y w(Xe) w (Xow) (@Xotur) - Xow-1)Xa()

utv==k
€Wy v

= D w(Xo) - w (Xow) (@Xoqurn) - Xoeo1y X +
s
o(k)=k
+ Y w(Xew) @ (Xow) (@) Xoqen) Kot 1) Xow)
i
o(k)#k

= Z w (Xo)) - w (Xow) (@) Xo@r1) - Xor—1) Xk +
t+s=k—1
ceWy s
+ Y w(Xew) w (Ko@) @ (X) (@) Xoqs1) - Xo-1)Xow)

utv=k
€Wy v
o(u)=k

= ) w(Xew) w (Xow) (@) Xoern) -+ Xog—1) Xk +
t+s=k—1
oeEWy s

+ > W (Xor() @ (Xor(u—1)) @ (Xk) (@) Xor(u) +* Xor(k-2)Xor(h-1)
Wit
o(u)=k
7=(u,u+1,...,k)

= Y w(Xom) W (Xow) (@) Xows1) - Xor-n) Xk +
t+s=k—1
oeWy s
+ Z w (Xom) * w(Xo@)w(Xr) (@) Xo41) Xoo—1)

t+s=k—1
gEWy s

= X1 Xg—1aXk + X1 Xpo1w(Xe)(a) (2 X1 Xka,
where to transform the second summand in () we used the fact that if o(k) # k, then k # (i) for
all u+1 < i< k—1 because o(i) < o(k) by the shuffle condition, whence o(u) = k. O

We are now ready to provide the details of the missing part in the proof of Proposition 3.8.

Lemma A.5. The A-coring section T' of the A-bialgebroid morphism 11 := U,(7) satisfies
IF'ar»u<b)=arT(u)«b
for all a,be A and u e U,(h).

Proof. To prove the compatibility between I' and the black actions (see (1.19)), it is enough to
check that T'(ua) = T'(u)a for a € A, u € U,(h). To this end, denote by 7, the endomorphism
(both of U,(h) and U,(g)) given by right multiplication by a € A. In view of the left A-linearity
of the maps involved, it suffices to check that I" o7, 0 ¢y = rq o' 0 ¢y (or, equivalently, that
I'org oty =105 084(7)) on an homogeneous element of the form X -+ X}, € S,(h). This can
be done directly as follows:

1

1.12
(Toraowy)(X1---Xy) U2 )r(;

Z Yy (Xl)w7k (Xk)gja(l) "'9.7J(k)u‘>
J1seees jkeI
oeSy,
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(1.15) 1
= F(g )y w.n(Xa(l))"'Wk(XU(k))@jl"'9jka>
T i1aeens i€l
cES),
(A.2) 1
- F<EJ ZJ er t+§ k Yin Ko@) .wjk(xg(k))wh(gj"(l)) o .w"wjf(t))(a)ejr(wl) "'gjf(’“)>
s i —
0562 TEW s
@ 1 X X 0 )
= o X X iy Ker@) i) Kor(e)wn (05 4)) @y (85 ,))(a) .

G1s-dR€l t+s=k
oce&), TEWi s

. -F(ij(t+1) (Xor(t41)) " 'ij(k) (Xgr(k))ejT(t+1) - 'ng(k))

(%) 1
= = > 3 i1y Ko(1))  Pi ) Kp(e))wn (05 (1)) - wp (B55_))(a) - -
el

o 'F(wj-r(t+1)(Xp(t'+1)) v .wj-r(k)(xp(k))ej‘r(t+l) o 'gjr(k))

w2 by (X Yereaby o (X Yooy (850 ) e wp (05, )(a)
" f+2 . ; Ej o Jr(1) \rowe (1) Jr(t) \rowe(£))90 Wi gy W5 gy )a) -
o S
TEWY 5 UEWt{CS

(@i, ws)EGS XS g

s F(ij(H.l) (Xo(t+ms(1))) wﬂ}(k) (Xo'(t+ws(s)))6j7(t+1) T gj.r(k))

1.12),(1.15) 1
N~ ) Y by Komy (1) i ) Km0 05, 1)) w5 (0, )(@) -
D ts=k Go(1yedr(r) €l
TGW‘YS “EWt,s
wi€S

I (Vg (X (41) - Xo(b45)))

s!
= > g*ﬂjT(l)"/(ngt(l))""PjT(t)V(Xawt(t))wh"(XjT(l))'"Whﬂ'(Xj,r(t))(a)--'
ths=k jo(1)srdr(e)€l
TEWL 5 ceWy s
wiEGS

by (Y (X e41)) Y (X (p45)))

(1.12) s!
= t+§=k ) ZJ . 1951 Eom (1) i () Y Xowy (9)ws (i 1)) - wa (X (1)) (@) -
TEWYL 5 T(l)gyg.vxyltﬂ—s(t)
w6,
1
.. X T P0r (1) YKot (1)) iy VKo (s (DX 41y " Xdr ()
Jr(t41)0 oI (k) €L
wseES g
(*) 1
= > > asﬁjT(l)’Y(Xp(n) : "er(t)"/(Xp(t))LPjT(t+1)’Y(Xp(f,+1)) : "SPjT(k)’Y(Xp(t+s)) S

t+s=k j1,....dpel
TEWr s pe&y

cewag (X)) wa (G @XG gy T Xy

(%) 1
= ) Z ) T P9r1) Y Xor () @iy YKo (k))ws (i (1)) @8 (K0 @ X 41y " X

() 1
= > E‘PH'Y(XU(I))'"‘ij'Y(Xa(k)) pX wo (Xir(1y) 9o (X () )X (1) Xirr

Glsees kel t4+s=k
eSS TEW: s
(A.2) 1
= > P 7 Xa)) 4 1 (Xo(k))Xiy 0 Xy @
G1seeest irel
eSS,

(1.12),(1.15)
= Yo (v(X1) - v(Xk))a = (ra 0 g 0 SA(Y))(X1 -+ X)),

where in (*) we used the fact that for any fixed 7 € W, 4, if o runs over all permutations in &y,
then p := o7 still runs over all permutations in &y, in (x) we used the fact that for t + s = k
fixed, Wy s x (&, x &5) — &, (0,w) — ow, is a bijection as in Lemma A.2, and in (e) we used
commutativity of A to reorder coefficients. O
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