Hopf envelopes of finite-dimensional bialgebras

Paolo Saracco ULB - Université Libre de Bruxelles

Bucharest - December 4, 2024

Based on an ongoing project with A. Ardizzoni and C. Menini

Fix a base field \Bbbk and let *B* be a \Bbbk -bialgebra.

Definition (Manin, 1988)

The Hopf envelope of B, aka the free Hopf algebra generated by B, is a Hopf algebra H(B) together with a bialgebra morphism $\eta_B \colon B \to H(B)$ such that for every Hopf algebra H and any bialgebra map $f \colon B \to H$, there exists a unique Hopf algebra map $\hat{f} \colon H(B) \to H$ such that the following commutes

The existence of the Hopf envelope

• Define a sequence of bialgebras $\{B_n \mid n \in \mathbb{N}\}$ by

$$B_0 \coloneqq B, \qquad B_{n+1} \coloneqq B_n^{\mathrm{op, cop}}$$

- Let \mathcal{B} be the bialgebra coproduct of $\{B_n \mid n \in \mathbb{N}\}$ with injections $j_n \colon B_n \to \mathcal{B}$
- \exists ! bialgebra morphism $\mathcal{S} \colon \mathcal{B} \to \mathcal{B}^{\mathrm{op, cop}}$ s.t. the following diagrams commute

 \bullet The two-sided ideal ${\cal I}$ of ${\cal B}$ generated by

$$\{(\mathcal{S}*\mathsf{id}-u\circ\varepsilon)(b_n),(\mathsf{id}*\mathcal{S}-u\circ\varepsilon)(b_n)\mid b_n\in j_n(B_n),n\in\mathbb{N}\}$$

is a bi-ideal

• The quotient \mathcal{B}/\mathcal{I} with the composition $B \xrightarrow{\pi \circ j_0} \mathcal{B}/\mathcal{I}$ is the Hopf envelope of B

Theorem (Ardizzoni, Menini, S., 2024) Let B be a finite-dimensional bialgebra. Then $H(B) = \frac{B}{KB}$ where K is the kernel of the canonical morphism

$$i_B \colon B \longrightarrow rac{B \otimes B}{(B \otimes B)B^+}, \qquad b \longmapsto \overline{b \otimes 1}.$$

Key ingredients:

- the surjectivity of *i*_B
- the notion of (one-sided) *n*-Hopf algebras

The canonical map *i*_B

The free Hopf module functor $(-) \otimes B \colon \mathfrak{M} \to \mathfrak{M}^B_B$ forms part of an adjoint triple

$$(-)\otimes_B \Bbbk \dashv (-)\otimes B \dashv (-)^{\operatorname{co} B}$$

and there is a natural transformation $\sigma_M \colon M^{\mathrm{co}B} \to M \otimes_B \Bbbk, m \mapsto m \otimes_B 1_{\Bbbk}$.

$$B \oslash B := \frac{B_{\bullet} \otimes B_{\bullet}}{(B_{\bullet} \otimes B_{\bullet}) B^{+}} \simeq (B_{\bullet} \otimes B_{\bullet}^{\bullet}) \otimes_{B} \Bbbk,$$

coalgebra in ${}_{B\otimes B^{\operatorname{cop}}}\mathfrak{M}$ with respect to $(a\otimes b)\cdot(x\oslash y)=ax\oslash by$,

$$\Delta(x \oslash y) = (x_1 \oslash y_2) \otimes (x_2 \oslash y_1)$$
 and $\varepsilon(x \oslash y) = \varepsilon(x)\varepsilon(y).$

Theorem

The following are equivalent:

(1) $(-) \otimes B \colon \mathfrak{M} \to \mathfrak{M}_B^B$ is Frobenius.

(2) The canonical natural transformation $\sigma: (-)^{\operatorname{co}B} \to (-) \otimes_B \Bbbk$ is invertible.

(3) The map $i_B : B \to B \oslash B, b \mapsto b \oslash 1_B$, is invertible.

(4) B is right Hopf algebra with right antipode S^r which is an anti-bialgebra map.

Proposition

The following assertions are equivalent for a bialgebra B.

(1) The map $i_B : B \to B \oslash B, x \mapsto x \oslash 1$, is surjective.

(2) There is $S \in \operatorname{End}_{\Bbbk}(B)$ such that $1 \oslash y = S(y) \oslash 1$, for every $y \in B$.

(3) There is $S \in \operatorname{End}_{\Bbbk}(B)$ such that $x \oslash y = xS(y) \oslash 1$, for every $x, y \in B$.

(4) For every $y \in B$ there is $y' \in B$ such that $1 \oslash y = y' \oslash 1$.

(5) For every $x, y \in B$ there is $y' \in B$ such that $x \oslash y = xy' \oslash 1$.

Example

Let *M* be a regular monoid: $\forall x \in M$, $\exists x^{\dagger} \in M$ such that $x \cdot x^{\dagger} \cdot x = x$. $i_{\Bbbk M}$ is surjective since in $\Bbbk M \oslash \Bbbk M$ we have

$$1 \oslash x = x^{\dagger} \cdot x \oslash x \cdot x^{\dagger} \cdot x = x^{\dagger} \cdot x \oslash x = x^{\dagger} \oslash 1.$$

E.g., let $f: H \to G$ be a group homomorphism and let $M := H \sqcup G$ with $h \cdot h' = hh', \quad h \cdot g = f(h)g, \quad g \cdot h = gf(h), \quad g \cdot g' = gg', \quad x^{\dagger} = x^{-1}.$

Definition

A left *n*-Hopf algebra is a bialgebra *B* with a minimal $n \in \mathbb{N}$ for which there is an $S \in \operatorname{End}_{\Bbbk}(B)$, called a left *n*-antipode, such that $S * \operatorname{id}_{B}^{*n+1} = \operatorname{id}_{B}^{*n}$.

Similarly one defines a right *n*-Hopf algebra and a right *n*-antipode.

A left and right *n*-Hopf algebra is an *n*-Hopf algebra. If the same S is both a left *n*-antipode and a right *n*-antipode, then we call it a two-sided *n*-antipode.

Example

For $n \in \mathbb{N}$, consider the monoid $M = \langle x \mid x^{n+1} = x^n \rangle$. The monoid algebra $\Bbbk M$ is a *n*-Hopf algebra: $\mathrm{id}_{\Bbbk M}^{*n+1} = \mathrm{id}_{\Bbbk M}^{*n}$ so that $\mathrm{id}_{\Bbbk M}$ and $u\varepsilon$ are two-sided *n*-antipodes.

Example

Let M be a commutative regular monoid: $\forall x \in M$, $\exists x^{\dagger}$ such that $x^{\dagger} \cdot x^2 = x$. If we perform a choice of x^{\dagger} for every $x \in M$, then $\Bbbk M$ is a 1-Hopf algebra with 1-antipode S uniquely determined by $S(x) \coloneqq x^{\dagger}$ for all $x \in M$.

Theorem

Let B be a bialgebra such that id is algebraic over \Bbbk in the convolution algebra End_k(B) (e.g., B is finite-dimensional). Then B has a two-sided n-antipode S for some $n \in \mathbb{N}$ which moreover satisfies $S * id_B = id_B * S$.

Proposition

Let B be a left n-Hopf algebra with left n-antipode S (e.g., B is finite-dimensional). Then $S(y) \oslash 1 = 1 \oslash y$ for all $y \in B$ and $i_B \colon B \to B \oslash B$ is surjective.

Proposition

Let B be a bialgebra such that i_B is surjective (e.g., B is finite-dimensional). Then, the map $\eta_B \colon B \to H(B)$ is surjective.

Proposition

- (1) $B/\ker(i_B)B$ is a bialgebra and $q_B: B \to B/\ker(i_B)B$ is a bialgebra map.
- (2) For any bialgebra map $f: B \to C$ into a bialgebra C with i_C injective, there is a (necessarily unique) bialgebra map $\hat{f}: B/\ker(i_B)B \to C$ such that $\hat{f} \circ q_B = f$.
- (3) If i_B is surjective, then q_B is right convolution invertible.

Theorem

Let B be a finite-dimensional bialgebra. Then $H(B) = B/ \ker(i_B)B$.

Proof: Set $K := \ker(i_B)$. Since B is finite-dimensional, i_B is surjective.

Thus, the canonical projection $q_B \colon B \to B/KB$ is right convolution invertible.

Since B/KB is a quotient of B, it is finite-dimensional and so it is a left *n*-Hopf algebra for some $n \in \mathbb{N}$ and hence, in fact, a Hopf algebra.

B/KB has the desired universal property, as any Hopf algebra H has i_H injective. \Box

Example 1

$$B \coloneqq \Bbbk \left\langle x, y \mid yx = -xy, x^3 = x, y^2 = 0 \right\rangle$$

which is 6-dimensional with basis $\{1, x, x^2, y, xy, x^2y\}$. Its coalgebra structure is uniquely determined by $\Delta(x) = x \otimes x$ and $\Delta(y) = x \otimes y + y \otimes 1$.

Proposition

B has a two-sided invertible 1-antipode $S : B \to B$ which is an anti-algebra map and it is defined by setting S(x) = x and $S(y) = (1 - x^2 - x) y$.

Proposition

 $B \oslash B \simeq H_4$ and, in fact, $H_4 = \operatorname{H}(B)$.

$$B \coloneqq \Bbbk \left\langle x \mid x^{m+n+1} = x^n \right\rangle$$

for $m, n \in \mathbb{N}$, monoid algebra with $\Delta(x) = x \otimes x$.

Proposition

B has a two-sided *n*-antipode $S = id^{*m}$.

Remark

In general, S is neither injective nor surjective. When m = 0, we get $x^{n+1} = x^n$ and $S = u \circ \varepsilon$. When m = 2 and n = 2, we get $x^5 = x^2$ and $S = id^{*2}$: $S(x^4) = x^8 = x^2 = S(x)$.

Proposition

 $B \oslash B \simeq \mathbb{k} \langle x \mid x^{m+1} = 1 \rangle = \mathrm{H}(B).$

Beyond finite dimension?

The same result holds for a left Artinian bialgebra B.

Proposition

If B is a left Artinian bialgebra, then i_B is surjective.

Corollary

Let B be a left Artinian bialgebra. Then, η_B is surjective and H(B) is finite-dimensional.

Proposition

Let $f: B \to B'$ be a bialgebra map which is right convolution invertible. If f is surjective and B' is left Artinian, then B' is a Hopf algebra.

Theorem

Let B be a left Artinian bialgebra. Then $H(B) = B/ \ker(i_B)B$.

However, we do not know if an Artinian bialgebra is necessarily finite-dimensional.

Thank you

